
November 15, 2019 CSC 530 1

Assignment #5: Parametric Polymorphism

Overview

This assignment extends the type system implementation to support universal and existential quantification.

Starting Point
Extend your solution to Assignment #4. Extend your type representation to include representations for

universal and existential types. Extend your expression representation to include terms for type abstraction,
type application, packing, and unpacking.

Tests
Include in your submission a set of tests verifying that your implementation works as expected, both for

terms that are well-typed and terms that are not.
Include a set of tests translated from the examples in the Ungraded Problem Set #5.

Typing Function
Extend your typing function to support the polymorphism rules given on the last page. Think carefully about

your implementation of substitution within the rules for T-TApp and T-Pack. If there are free variables in β,
can they be captured by the substitution?

Grading
Grading will be divided as follows, and will be based on both functionality and quality of implementation.

Part Percentage

Universal Quantification 45
Existential Quantification 45

Tests 10



November 15, 2019 CSC 530 2

The terms for the expression language are to be inferred from the rules below coupled with the discussion in
lecture (and in the textbook). Your implementation, of course, will work on the internal AST representation of
such expressions, so you should be able to map the terms used in the typing rules to the variants declared in the
Rust code.

nv is for numeric values.

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` nv : Int (T-IntConst)

t1 : Int

Γ ` iszero t1 : Bool (T-IsZero)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int (T-Add)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 − t2 : Int (T-Sub)

x : τ ∈ Γ
Γ ` x : τ (T-Var)

Γ, x : α ` t1 : β

Γ ` λx : α. t1 : α→ β (T-Abs)

for each i Γ ` ti : τi

Γ ` {li = ti
i∈1..n} : {li : τi

i∈1..n} (T-Rcd)

Γ ` t1 : {li : τi
i∈1..n}

Γ ` t1.j : τj (T-Proj)

Γ ` tj : τj

Γ ` 〈lj = tj〉 as 〈li : τi
i∈1..n〉 : 〈li : τi

i∈1..n〉 (T-Variant)

Γ ` t0 : 〈li : τi
i∈1..n〉 for each i Γ, xi : τi ` ti : τ

Γ ` case t0 of 〈li = xi〉 ⇒ ti
i∈1..n : τ (T-Case)

Γ ` unit : Unit (T-Unit)



November 15, 2019 CSC 530 3

S <: S (S-Refl)

S <: U U <: T
S <: T (S-Trans)

Γ ` t : S S <: T
Γ ` t : T (S-Sub)

P2 <: P1 R1 <: R2

P1 → R1 <: P2 → R2 (S-Arrow)

{li i∈1..n} ⊆ {kj j∈1..m} kj = li implies αj <: βi

{kj : αj
j∈1..m} <: {li : βi

i∈1..n} (S-Rcd)

Γ ` t1 : Bool Γ ` t2 : τ1 Γ ` t3 : τ2 τ2 <: τ1
Γ ` if t1 then t2 else t3 : τ1 (T-If1)

Γ ` t1 : Bool Γ ` t2 : τ1 Γ ` t3 : τ2 τ1 <: τ2
Γ ` if t1 then t2 else t3 : τ2 (T-If2)

Γ ` t1 : α→ β Γ ` t2 : α′ α′ <: α

Γ ` t1 t2 : β (T-App)

Polymorphism Rules

Γ,X ` t1 : τ

Γ ` λX. t1 : ∀X.τ (T-TAbs)

Γ ` t1 : ∀X.τ
Γ ` t1 [β] : [X 7→ β]τ (T-TApp)

Γ ` t1 : [X 7→ U]τ1

Γ ` {∗U, t1} as {∃X, τ1} : {∃X, τ1} (T-Pack)

Γ ` t1 : {∃X, τ1} Γ,X, x : τ1 ` t2 : τ2

Γ ` let {X, x} = t1 in t2 : τ2 (T-UnPack)


