REACTIVE ENCAPSULATION MAPPINGS IN HIDRA

Scott M. Marshall, John M. Bellardo
Computer Science Department
California Polytechnic State Univ.
San Luis Obispo, CA, USA
email: {scmarsha,bellardo} @calpoly.edu

ABSTRACT

Scalability analysis of the Internet has resulted in two main
concerns: rapid growth of the forwarding table and BGP’s
poor convergence properties when distributing hundreds of
thousands of routes. HIDRA [5], a backward-compatible
architecture designed with feasibility-of-implementation in
mind, has been proposed as one solution to reduce the size
of the default-free zone (DFZ) forwarding table.

This work extends HIDRA, greatly reducing the num-
ber of routes maintained by BGP, yet preserves a practi-
cal, incremental deployment strategy. The proposed proto-
col also provides end networks direct, finer-grained control
over the distribution of packets flowing into their network
and provides for efficient mobility support.

The new mapping protocol is prototyped on a small
network testbed and shown to work in all tested circum-
stances, including normal network operation, link failures,
and transitional routing environments. Additionally, IP
Mobility is discussed and shown to work in this environ-
ment without triangle routing and only minimal additional
overhead.

KEY WORDS
Routing Protocols, IP based Networks, Internet Architec-
tures, HIDRA

1 Introduction

Concerns about the scalability of today’s Internet structure
are well-known and generally fall into one of two cate-
gories. There is substantial concern about the continued
growth of the DFZ forwarding table and its resulting impact
on the cost of routers and routing policy [3]. The second
area of concern is the performance, stability, and conver-
gence properties of BGP as it exchanges an ever increasing
number of less-stable routes [16].

HIDRA [5], a Hierarchical Inter-Domain Routing Ar-
chitecture, is an architectural approach to reducing the size
of the DFZ forwarding table. HIDRA divides the Inter-
net into a multi-level hierarchy, using IPv4 encapsulation
to forward packets between different levels of the hierar-
chy. HIDRA'’s overriding design constraint is deployabil-
ity. It goes to great lengths to maximize compatibility with
existing protocols such as IPv4 and BGP, current network
hardware, number resource policy, and existing business

Daniel Nelson, Bryan Clevenger
Research done while students at:
California Polytechnic State Univ.
San Luis Obispo, CA, USA

email: daninels@cisco.com, bcleveng @gmail.com

constraints. HIDRA substantially reduces both the num-
ber of routes in the DFZ forwarding table and the table’s
projected growth rate.

This work extends HIDRA by adding a reactive map-
ping system for all levels of the network hierarchy below
the root. This mapping protocol addresses the scalability
concerns of BGP, reducing the number of mappings BGP
announces by an order of magnitude. The mapping proto-
col also enables traffic engineering and other coarse routing
policies to be applied at the individual host level without
exponential growth of any single mapping table.

This work preserves HIDRA’s original focus on prac-
tical, deployable solutions. In particular, it doesn’t change
the overall architecture or depend on any router hardware
or firmware upgrades. The mapping protocol leverages
most of the existing DNS software and management infras-
tructure. The only additional changes are updates to the
DNS servers of organizations hosting the mapping records.
HIDRA can seamlessly use either its original, BGP-based
mapper or the reactive, DNS mapper.

The reactive mapper has been implemented and tested
within the original HIDRA testbed. This work presents re-
sults demonstrating that normal operations and link fail-
ure recovery function as expected. In addition, it provides
some initial insight into the performance and latency of the
mapper.

This work also discusses the positive impact that re-
active routing has on IP mobility, namely that zero-stretch
IP mobility is feasible. Initial mobility results are shown
that demonstrate both the operational correctness of mobil-
ity and its minimal additional overhead.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 provides the
minimally necessary background context on HIDRA and
proactive mapping to understand this work. Section 4
details the reactive mapping protocol that was added to
HIDRA. Section 5 addresses reactive mapping’s impact on
mobility. Section 6 presents the prototype implementation
and experimental results. Section 7 explains some future
directions and Section 8 concludes.

2 Related Work

There are several existing papers which contain various as-
pects of reactive routing similar to those added to HIDRA.

However, HIDRA is unique in that it strives to maintain a
viable migration strategy from the current Internet architec-
ture to the proposed alternative. This overarching objective
results in a combination of design decisions not found in
other work.

Feamster et. al. [7] identify many of the benefits and
motivation for using reactive routing. Most of the research
focuses on peer-to-peer overlay networks, so all of their
mechanisms aren’t directly applicable.

In [21], Yang et al. describe NIRA, A New Inter-
Domain Routing Architecture. The proposed reactive rout-
ing scheme uses rate-limited ICMP messages as a means
to notify network nodes of a change in route availability.
This approach is similar to that used in HIDRA. Adoption
of NIRA may be impeded due to the new proactive and re-
active routing protocols proposed.

Carpenter et.al. presents a series of architectural prin-
ciples for the Internet [2]. One of the principles, “Circu-
lar dependencies must be avoided”, motivates the use of
HIDRA’s mixed proactive and reactive routing to avoid cir-
cular dependencies.

The Tunneling Route Reduction Protocol
(TRRP) [18] proposes using DNS [11] to distribute
gateway addresses globally and tunnels to reduce total
route count. This would provide reactive routing capa-
bilities to end users via the use of reverse lookups on
IP addresses to determine encapsulation information for
a destination. The data contained in HIDRA’s ENCAP
records is based on this work, however TRRP’s use of
DNS TXT records rather than a more specific resource
record type may impede implementation. Other routing
proposals, such as [1], also use DNS TXT records as the
basis for exchanging mapping information.

Feldmann et.al. [8] propose hierarchical architecture
for Internet routing (HAIR). HAIR includes many of the
same concepts as HIDRA, such as multiple level routing
hierarchy and support for efficient mobility. It uses an al-
ternative reactive mapping service. It also includes initial
performance results showing the benefits a hierarchal net-
work architecture can have for mobility. HAIR’s use of
IPv6 and a new mapping service separate it from HIDRA.

3 HIDRA Background

The reactive mapping system described in this paper was
developed within the context of HIDRA, however most of
the mechanisms aren’t HIDRA specific. This section pro-
vides an overview of general HIDRA operation, including
encapsulation and proactive mapping. Readers are referred
to the original HIDRA [5] work for more complete details.

HIDRA is a hierarchal network architecture, with
level 0, abbreviated Ly, at the top of the hierarchy. There
are at least two levels in the network. ISPs are generally
members of both Ly and Lq, enabling them to forward
traffic between levels of the hierarchy and transmit pack-
ets across Lg. Stub and multi-homed end-site networks are

generally members of L; only. Those networks reach L
through their upstream provider(s).

Packets are encapsulated as they traverse up the hier-
archy, such as from L; to Ly. Each level adds an additional
IPv4 encapsulation header. In the common case of a two-
level hierarchy, packets being forwarded through L, have
two IPv4 headers. The packets are forwarded based on their
L destination address, arriving at the immediate upstream
provider for the destination network. After arriving at the
last-hop ISP, the L(header is removed via decapsulation
and the original packet is forwarded to its L; destination.
The process is similar when there are more than two levels
in the hierarchy, except there are more encapsulation and
decapsulation operations. As a rule of thumb, a hierarchy
with n levels will result in n — 1 encapsulation and de-
capsulation operations. This general network architecture,
map-encap [12], is not novel and has been both used and
studied in other literature, e.g. [19, 6].

3.1 Ly Addressing

HIDRA uses IPv4 as the Ly protocol. This places an ad-
ditional burden on the encapsulation operation, as it must
map a destination L address into an IPv4 L, address. The
Ly address must be that of an immediate upstream provider
for the L destination. This address can be thought of as a
node’s location in the network. HIDRA uses a network’s
autonomous system number (ASN) to determine its Lg ad-
dress. ASNs are already managed by the existing Internet
Assigned Numbers Authority (IANA) infrastructure.

L addresses are formed by combining a well-known
/8 prefix with the 24 least significant bits of the ASN. This
mechanism has a number of benefits, including the abil-
ity to filter and route all Lg traffic with a single rule that
matches the well-known /8. It also partially solves the map-
ping problem. It is no longer necessary to map an arbi-
trary L; address to an arbitrary Ly IPv4 address. All that is
needed is to map an L, address to an ASN.

3.2 Proactive Mapping

Proactive mapping distributes the entire L;-to-ASN map-
ping table before any mapping is performed, and contin-
uously updates it in response to topology changes. The
primary drawbacks of this technique are higher memory
requirements for storing the entire table and more data ex-
changed by the mapping protocol. The biggest benefit is an
extremely low first packet latency. Since the entire table is
already stored in DRAM, the actual mapping operation is
simply an efficient table lookup.

HIDRA uses unmodified Border Gateway Proto-
col [14] (BGP) to proactively maintain the L;-to-ASN
mapping table. This was chosen to maximize backward
compatibility with existing Internet routes, route advertise-
ments, and routing policy. Unmodified BGP works well
because each route advertisement already contains all the
necessary information — the destination network prefix and

Field Size Description

Priority 1 Byte

Expresses the order in which ENCAP records are used.

Preference | 1 Byte

When multiple ENCAP records exist with the same priority, traffic is load-
balanced between them weighted by the preference value.

Level 1 Byte Level of encapsulation. Used to obtain ENCAP records for all levels in the hierarchy
with a single query.

Flags 1 Byte Reserved for future use.

Type 2 Bytes The type of the encapsulation data.

Data Variable Length | Encapsulation data. Specific format determined by type field.

Table 1. Summary and brief description of the fields in the new DNS ENCAP resource record.

ASN which originated the route. HIDRA keeps all proac-
tive routing information in the BGP routing table (RIB),
but prevents it from being added to the expensive forward-
ing table (FIB), thereby reducing the number of routes in
the DFZ.

3.3 Encapsulation

HIDRA requires at least one device within each network
be able to encapsulate traffic before it traverses Ly. This
device is responsible for resolving L; addresses to ASNs.
The first encapsulation device must be reachable by the
packet’s source without needing additional encapsulation.
Encapsulation is a relatively slow operation. To minimize
negative impacts on scalability, the encapsulation device
should be as close to the source as possible. Ideally the
originating host will encapsulate its own packets (termed
host-based encapsulation).

In proactive mapping, each encapsulation device
needs to actively receive BGP advertisements. This effec-
tively precludes host-based encapsulation, necessitating a
network-based encapsulation device. In contrast, the re-
active mapping scheme proposed here removes the need to
run BGP on encapsulation devices, enabling host-based en-
capsulation based on DNS records.

3.4 Decapsulation

Decapsulation removes the Ly header and forwards the
packet according to the remaining L, header. This should
take place as close to the Ly < L; boundary as possible.
In HIDRA, this point is immediately after the packet enters
the nearest upstream network provider of the final destina-
tion. This point is not within the destination network, even
if that network has been issued an ASN. This placement
enables the decapsulated packet to traverse the most effi-
cient path through L; to its destination. Decapsulation is a
relatively fast operation that doesn’t require table lookups.

Decapsulation within the final transit AS creates an
asymmetry between the encapsulation and decapsulation
location. Packets are typically encapsulated within the cus-
tomer’s network, or, in the worst case, at the provider’s end
of the customer’s access link. They are decapsulated as
soon as they enter the destination provider’s network.

4 Reactive Mapping

The key difference between the original proactive map-
ping system presented in [5] and reactive mapping is when
the mapping data is distributed over the network. Reactive
protocols don’t distribute the state information a priori. In-
stead, they resolve the mapping information on-demand as
part of the encapsulation process. This results in more map-
ping latency when compared to proactive systems. Map-
ping entries are cached to minimize the lookup latency of
future packets sent to the same destination. As a result, the
latency on subsequent packets is the same in both proactive
and reactive schemes.

The reactive mapping software must be installed on
all encapsulation devices. During initial deployment, there
will only be a small number of these per HIDRA-aware
network. This minimizes the impact of adopting reactive
routing. Some features enabled by reactive routing add ad-
ditional encapsulation requirements. For instance, when
using mobility, it is necessary for the mobile host to per-
form all of its own encapsulation and mapping.

DNS [11] is used to store and distribute the
destination-specific mapping data. This choice was made
for several reasons. First, control of DNS is distributed to
organizations by a recognized central authority. Organi-
zations are free to modify their own entries as they deem
necessary, allowing distributed, autonomous control. Any
new lookup protocol would need to have a similar admin-
istrative structure.

DNS is already widely deployed. Its strengths, weak-
nesses, and operational characteristics are well understood.
It is critical for many common Internet activities, such as
web browsing and email. DNS servers cache entries closer
to the encapsulation device, reducing lookup latency. This
is true even if the server doesn’t understand the format of
the resource record it is caching.

DNS is already used during the initial stages of estab-
lishing most Internet connections. These connections begin
by resolving a DNS name into an IP address. Piggybacking
the reactive mapping record in the response to the forward
name lookup virtually eliminates any first-packet latency
for these connections.

Finally, DNS can be made secure through technolo-
gies such as DNSSEC [20], which allows for signing of
records, preventing spoofing attacks. It would be possible

to use an entirely new protocol for reactive routing lookups
rather than DNS, but the overhead in designing, testing,
deploying, and building a general operational consensus
around such a new system will most likely be too high a
hurdle to overcome.

In addition to including the reactive mapping infor-
mation in a forward DNS lookup, an end host can explicitly
lookup an appropriate mapping by performing a standard
reverse DNS lookup for the L; destination addresses. The
reverse lookup query requests the ENCAP record instead
of the standard PTR record. This technique doesn’t mask
first packet latency, but is a necessary fallback for packets
not preceded by a forward lookup.

4.1 ENCAP Records

To distribute mapping records with DNS, a new resource
record type, called the ENCAP record, is defined. ENCAP
records are returned from both a forward or reverse DNS
lookup. They contain the six fields summarized in Table 1
and described here. The Data field specifies the encapsu-
lation address. Its exact format and length is variable. For
example, an ASN or IPv4 encapsulation address requires
4 bytes while an IPv6 encapsulation address would require
16 bytes.

The two-byte Type field defines the format of the data.
Currently, two types are implemented: ASN, and A. ASN
signifies that a four byte ASN is contained in the data field.
The A type indicates that the data field contains a standard
DNS type A resource record — a four byte IPv4 address.

The one-byte Flags field contains various informa-
tional flags from the server. All bits in this field are re-
served for future use. The one-byte Level field specifies the
hierarchal level of the ENCAP resource record. This is a
performance optimization for networks with more than 2
levels. A query response for a network of n levels must
contain all records for levels 0...n — 1.

The one-byte Priority and Preference fields allow net-
work administrators to provide failover and load balanc-
ing capabilities for encapsulation addresses. When several
records with the same level are returned, the encapsulation
device must choose the record with the highest priority, and
fail over to entries in decreasing priority order. If there are
multiple records with the same level and priority, the Pref-
erence field provides load-balancing. Subsequent packets
to the same destination should be encapsulated using each
different record with the same priority. The preference field
defines a weighted distribution used to determine how fre-
quently a particular mapping should be used.

4.2 Circular Dependency

A circular dependency is created by the reactive system. A
reactive lookup requires a DNS Query packet be sent to a
remote DNS server, which is typically located in a different
L1 network. For instance, most ASes don’t operate their
own root DNS server. This query requires encapsulation

to reach the server. Encapsulating the DNS Query requires
resolving the DNS server’s L.y address into its Ly address,
which requires another reactive lookup completing the cy-
cle.

DNS already addresses a similar dependency. A re-
solver needs to know where the root nameserver is before
any lookups can be performed. The resolver uses a “hints”
file to seed this information. As the lookup progresses
down the name hierarchy, each nameserver provides the ad-
dress “glue” records for the next server down the chain.

There are two ways to break this dependency in
HIDRA. The first option is to include ENCAP records
in the standard DNS “hints” file alongside the A records
for the root servers. Since this may prove problematic
to deploy, a second option is proposed. Proactive map-
ping can be used to distribute the encapsulation state for,
and forward packets to, the root nameservers. The root
nameservers contain the “glue” encapsulation records for
the next nameservers down the chain. This is termed a
mixed-mode network, where the most critical infrastruc-
ture routes are handled proactively and everything else re-
actively. Mixed-mode mapping breaks the aforementioned
dependency cycle because the mapping for the root DNS
server’s L address no longer depends on a DNS lookup.

4.3 Failure Detection

Reactive mapping complicates link failure detection and re-
routing. In a BGP-based proactive system, link failures are
detected and routed around quickly, on the order of tens of
seconds !. Reactive schemes don’t have this luxury. In-
stead, the primary mechanism for refreshing bad mappings
is timeouts. When a cached mapping times out, it is dis-
carded. If another packet for the same destination needs
to be encapsulated, a new reactive lookup is performed.
Achieving the same fast detection properties of proactive
mapping requires a very low timeout value. This has the
undesired impact of dramatically increasing the overhead
and network resource requirements of the reactive mapping
service, negating the performance benefits achieved with
caching.

HIDRA'’s reactive mapping mitigates the slow detec-
tion speeds by requiring all encapsulation devices to notify
the L packet source when the L; destination is no longer
reachable with a particular ENCAP record. This is deter-
mined by maintaining a small amount of additional state in-
formation in the encapsulation device. The device already
tracks the set of present L routes. It also tracks the set
of past L, routes — those routes that were previously in its
L1 but are currently not. This information is maintained
via the iBGP peering session(s) the encapsulation device
establishes with its L; routers. Before a packet is encap-
sulated, its L; source and destination address are verified.
If both addresses are not part of the encapsulation device’s

Exact timings will vary with the BGP settings of the routers involved
in detecting the failure and propagating the associated update(s).

L, network, an ICMP Redirect [15] packet is returned to
the L, source of the packet.

The L; source address of the ICMP packet is the en-
capsulation device that detected the problem. The L; des-
tination is the Ly source of the packet that triggered the
redirect. The ICMP packet contains the ASN of the encap-
sulation device that detected the problem. A new ICMP
Redirect subcode is used to differentiate HIDRA’s redirect
from the other redirects currently in use.

After a node receives an ICMP Redirect, it marks the
encapsulation mapping as unavailable. The unavailable en-
try is determined by examining the ASN within the mes-
sage payload and the destination address found in the IP
header within the payload of the ICMP packet. If the newly
unavailable entry is the only remaining mapping with the
highest priority, the next highest priority set of mappings
is used. If, after marking the current entry as unavailable,
there are more mappings with the same priority, only the
remaining valid mappings are considered.

4.4 Failure Recovery

Detecting and responding to a link recovery in a timely
manner has the same challenges as detecting the failure.
Namely, using a strictly timeout-based technique creates
an undesirable tradeoff between recovery performance and
network overhead. HIDRA’s solution to this problem is
similar to the technique it uses to detect failures, but it re-
quires that even more state be tracked by the encapsula-
tion devices. Every time an encapsulation device sends an
ICMP Redirect (Section 4.3) to a new L; destination, this
destination is added to a recovery notification table. Once
the link has been restored, the encapsulation device sends
an additional ICMP packet to every L; destination in this
list.

Link recovery is inferred based on the contents of the
past and present Ly route sets. If a new L; route is learned
that was not known in the past, no link recovery has oc-
curred. If a L; route was known in the past, had its route
advertisement withdrawn and then re-announced, a link re-
covery took place and the notifications are sent. Since the
past and present L routes are maintained via iBGP, this
detection occurs shortly after a link is brought up.

The amount of memory required to store this state
is much greater than that needed for the failure detection.
Sending the ICMP Redirects on link recovery requires one
table entry per actively transmitting < source, L1 > route
pair. Failure detection requires just one table entry per L
route that is withdrawn as a result of the failure.

S Mobility

Widespread use of IP mobility has two main requirements.
First, a mobile host must be addressable by the same iden-
tifier, no matter its location in the network. Second, com-
municating with the host while it is mobile must not incur

HIDRA Kernel Module

Pkt Is Y Decap \Decap

In Encap? Packet Out

N Y
| 3 ASN 3| Encap Encap>
>
/

Cache Hit? Packet Out

__ Update; i ___ KernelMode
Cache, (via NFQueue) User Mode
1 N\
Proactive / Reactive
Mapping
E late Packet Encap
ncapsulate Packe out

HIDRA Daemon

Figure 1. HIDRA software design overview and packet
processing flowchart.

a substantial performance penalty [9, 10]. Existing Mo-
bile IP standards [13] meet the first requirement via tunnels
and triangle routing, but fall short of the second require-
ment [17]. HIDRA easily meets both these requirements
with only slight modifications.

Zero-stretch mobility requires the addition of a third
level to the routing hierarchy and a corresponding encap-
sulation header. The innermost layer, Lo, is the mobile
node’s constant identifier. The L, address is assigned by
the current host network and is non-mobile. It is part of the
mobile node’s location identifier. L is the network address
for L,, completing the node’s location identifier. This sys-
tem enables efficient routing of the packet directly to L;.
The only performance penalty is due to the extra encapsu-
lation header, which causes a slight reduction in the amount
of useful data that can be transmitted in a single packet.
There is a very slight increase in per-packet latency due to
the additional decapsulation operation and more complex
encapsulation operation. Mobility also places additional
requirements on the mobile node.

Mobile nodes must decapsulate a portion of each
packet. They must be able to remove the L; header, mak-
ing it appear as if the packet only has the Lo header. The
mobile node must also be able to update its current location
in the mapping system. In HIDRA, this entails modifying
one or more of the ENCAP records (Section 4.1) for the
corresponding mobile identifier address. Existing dynamic
DNS update protocols already provide the necessary secure
mechanism for this.

Mobility also creates new constraints on address allo-
cation. The mobile node must be able to retain the identi-
fier address from its home network while acquiring a new
Ly address from its new host network. The home network
must not re-assign the mobile node’s identifier address. The

Transit
AS 2

)

Transit
AS 1

Transit
AS3

Figure 2. Testbed network topology diagram

uniqueness of these addresses must be preserved.

Detecting when a host moves is challenging because
the only directly-observable event is a communication fail-
ure. The same event can be caused by many conditions,
including a power failure, a transient network fault, or mi-
gration of the mobile node. In any of these cases, the sta-
tionary node’s encapsulation device immediately performs
another reactive lookup for the mobile host.

Timeouts are typically used to infer communication
failure. These can take anywhere from tens of seconds to
minutes. Depending on the mobile node’s rate of move-
ment, this delay may introduce unnecessary overhead into
the communication. A more graceful alternative allows the
mobile node to provide a “mobility hint” to the other node.
For security reasons, this can only be a hint and can’t actu-
ally contain the updated mapping information. The mecha-
nism for delivering this hint is an IP Options flag. Respond-
ing to the hint is the same as responding to a communica-
tion failure.

6 Experimental Validation

The reactive mapping protocol presented in this work has
been added to the existing HIDRA prototype. This im-
plementation demonstrates basic proof-of-correctness and
enables an early understanding of the additional overhead
involved with the network architecture.

6.1 Software

The original Linux-based proactive HIDRA implementa-
tion [5] was extended to include support for reactive map-
ping. An overview of the design is shown in Figure 1. It
includes a kernel module for performing fast encapsulation
and decapsulation operations, and a user-level daemon for
resolving all mappings. Once a mapping is resolved by the
daemon, an entry is added to the kernel’s cache to prevent
future packets sent to the same destination from making the
slow kernel—user trip.

Adding reactive routing support involved three sub-
stantial changes to the existing implementation. HIDRA’s

user-space daemon was modified to perform the reverse
lookups and parse the resulting DNS ENCAP records as
described in Section 4. The kernel module and HIDRA
daemon were modified to generate the new ICMP Redirect
errors after a link failure that results in an encapsulation
change. Finally, both pieces were modified to correctly re-
spond to the new ICMP Redirect errors by falling back on
ENCAP records with a lower priority. Recovery after a link
is restored remains future work.

It was also necessary to modify a DNS server to add
support for the new ENCAP resource records, including re-
turning the appropriate glue records in response to queries
for NS records. Due to its popularity and relatively clean
design, ISC BIND [4] was modified to include these fea-
tures.

6.2 Experimental Setup

A six-AS network testbed was created using the proto-
type HIDRA implementation, Cisco routers, and Cisco
switches. The AS-level topology of the testbed is illus-
trated in Figure 2.

During reactive routing tests, the root DNS server was
located in AS1. Two top level domain (TLD) servers were
located in AS3 and AS2. These were authoritative for dif-
ferent TLDs. There are no redundant DNS servers in this
configuration.

The encapsulation mapping for the root DNS server,
a /32 1Pv4 route, is distributed with HIDRA’s proactive
mapping protocol. This mapping for the root DNS server
is the only mapping distributed via the proactive protocol.
All mappings for other DNS servers, including TLDs and
reverse name lookups, are reactive. Using this setup for
all the experiments demonstrates that the “mixed-mode”
proactive-reactive mapping environment described in Sec-
tion 4.2 works as expected.

6.3 Reactive Protocol Results

Two sets of experiments were done with the testbed to
verify operational characteristics of reactive mapping in
HIDRA. The first focuses on quantifying the amount of

First Packet Latency CDF
100

80 r

60

Percentile

40 t

20 r Legacy
Proactive —-——-
0 ‘ ‘ ./ Reactive
20 40 60 80 100

Latency (ms)

Figure 3. CDF of observed first packet roundtrip latencies
for legacy (e.g.non-HIDRA), proactive mapping, and reac-
tive mapping within the testbed. All caches, including host
ARP caches, were cleared. A few reactive data points at
850 ms (starting around the 97" percentile) are truncated
to make the graph more readable.

first packet latency that reactive mapping introduces, and
the second demonstrates the network’s responsiveness to
link failures.

6.3.1 First Packet Latency

In this experiment, 2000 ICMP Echo (ping) packets were
sent from a host in AS6 to a host in AS5. All encapsulation
and decapsulation was done in AS3 and AS2. Before each
ping was sent, all caches (ARP, DNS, HIDRA kernel mod-
ule, etc) were flushed. Figure 3 is a CDF comparing all
2000 roundtrip ping latencies for three different network
configurations: “legacy” networks (e.g. the current Inter-
net architecture), HIDRA with proactive mapping only, and
HIDRA with reactive mapping. The difference between the
legacy and proactive HIDRA curves, roughly 5.5ms, is at-
tributable to the extra CPU overhead and slightly longer
paths taken by the packets for encapsulation and decapsu-
lation. The difference between the proactive and reactive
curves, 45.5ms, is the additional latency incurred with re-
active mapping. This additional time is attributable to DN'S
operations including recursively resolving the reverse DNS
lookup, encapsulating the DNS request packets, resolving
the Ly destination for the requests, and encapsulation /
mapping for the responses. One-way latencies are slightly
more than half the roundtrip latencies due to caching while
the ICMP Echo Request traverses the network. Note that
only the relative timing values are meaningful. The abso-
lute time values can vary greatly depending on node CPU
power, network equipment capability, and size of the net-
work.

6.3.2 Link Failure Test

This test demonstrates how quickly HIDRA with reactive
mapping can detect and route around a link failure that re-

Link Failure Rerouting
2.4

‘Legacy‘ -
22 Reactive °

1.8 |
16 |
14 1

1.2 [0 9% oo

000 4
o o oo °
o o o0, o
00 0950 0 o ooo 00O 000
o0 0°0%, o o0

000

°
1H o
.
+ + o+ o+ ++ + +
08} Fyett Lot P TR I
+ty R et s *

Roundtrip Latency (ms)

0.6

0 10 20 30 40 50 60
Experiment Time (s)

Figure 4. Ping latencies between a host in AS1 and AS4 be-

fore and after link failure. The link between AS2 and AS4

was unplugged at time 30. Connectivity is restored, using

the path through AS3, at time 36 in the legacy network and

time 37 with reactive mapping. Missing data points indi-
cate packets never reached their destination.

sults in a mapping change. Correctly and quickly fixing
these failures is one of the primary roles of a routing pro-
tocol. To test network operation in spite of link failures, a
steady stream of pings, one per second, was sent from AS1
to AS4. Due to the priority setting in the reactive mapping,
these packets traverse the path AS1—AS2—AS4. After the
30th packet was sent and the response received, the connec-
tion between AS2 and AS4 was unplugged. This is seen as
packet loss (e.g. no data points) in Figure 4 starting at time
31. Packets continue to get lost until the network repairs
itself, at time 36 for the legacy network and time 37 for the
reactive network. This extra delay is inherent in reactive
mapping, as the ICMP Redirect packet isn’t sent until the
underlying BGP routes in L; have stabilized. This causes
reactive recovery to be delayed by 1 packet, which equates
to 1 second in this experiment.

Also note the higher latency on the 37" reactive
packet. This is due to the packet being processed by the
HIDRA daemon. When the ICMP Redirect is received,
the corresponding entry in the kernel encapsulation cache
is flushed, causing the next packet to be processed by the
user-space daemon. The daemon determines the current set
of valid mappings and installs them into the kernel’s cache.
Since there was a lower priority, but still valid, mapping
returned in the original DNS response, no DNS query took
place. Had a DNS query been necessary this latency would
have been higher.

6.4 Mobility Results

Mobility, as described in Section 5, was implemented and
tested within HIDRA’s reactive network architecture. Since
mobility was tested using an earlier version of the testbed
and software, there are a few important differences from the
previous experimental setup. The testbed consisted of two
ASes, the minimum to test inter-AS mobility. Due to lim-

File Transfer Time CDF
100 /%\/ﬂﬂ/ ,,,,,,,,,, = e B

90 |- I 1
80 | o 1
70 t i i
60 | : 1
50 { :]
30 t | 1
20 r Legacy Internet Architecture]

10 DRA/Proactive - 1
HIDRA/Reactlve \with Mobility -

0
17 172 174 176 17.8 18 18.2 18.4
Transfer Time (sec)

Percentile

Figure 5. CDF of seconds required to transfer a 20MB
file in the legacy, HIDRA proactive, and HIDRA reactive
with mobility enabled network architectures. All tests per-
formed 100 times.

itations in available network equipment, the link between
the two AS’s routers was 10Mbit Ethernet. The end hosts
and nameservers in the network were also older, slower
computers.

Figure 5 compares the length of time necessary to
transfer a 20 Megabyte file using three different architec-
tures: current Internet architecture (legacy), HIDRA with
proactive mapping, and HIDRA with reactive mapping and
a mobile host. During the mobility experiments, the host
was actually mobile — it was not connected to its home
AS. However, the mobile host wasn’t moving, and it didn’t
change attachment points during the file transfer. The slight
slowdown in the mobile case is due to the three-level net-
work hierarchy. This extra level adds an additional 20 bytes
of header to every packet. This results in a roughly 1.36%
reduction of the amount of file data in a single packet. Data
collected, but not graphed here, shows the packet count in-
creases roughly 1.45% over the proactive architecture. As
seen in Figure 5, absolute transfer time increases roughly
1.55%. These experiments validate both the feasibility of
mobility within HIDRA and its low cost.

7 Future Work

This paper presents a design for quicker detection of link
recoveries when using reactive mapping. This recovery
mechanism hasn’t been prototyped yet. An important fu-
ture direction is completing this implementation, testing,
and working out any design quirks.

Support for using IPv6 as the L protocol is another
important feature that needs to be added to HIDRA. The
IPv6 implementation should focus on using reactive map-
ping since IPv6 doesn’t currently enjoy widespread deploy-
ment. Using a purely reactive environment enables deploy-
ment over today’s IPv4 backbone with unmodified routers.
Adding IPv6 proactive mapping and the ability to use IPv6
as the L protocol is also future work.

8 Conclusion

This work presents a new reactive mapping scheme for
HIDRA. The scheme leverages existing DNS servers by
distributing a reactive mapping resource record through the
existing DNS infrastructure. The reactive mapping scheme
substantially reduces the number of routes exchanged with
BGP at the expense of additional first packet latency.

Reactive mapping’s impact on IP mobility is also ex-
amined. The map-encap scheme of HIDRA enables mo-
bility without triangle routing, at the cost of slightly more
per-packet header overhead. Mobility is implemented and
tested. It is shown to both work correctly and experience
only a slight decrease in performance due to the reduction
in per-packet goodput.

References

[1] RFC 1383 (rfc1383) - an experiment in DNS based IP routing.
http://www.fags.org/rfcs/rfc1383.html.

[2] RFC 1958 - architectural principles of the internet. b. carpenter, ed..
http://rfc.sunsite.dk/rfc/rfc1958.html.

[3] A proposal for scalable internet routing & addressing.
http://tools.ietf.org/html/draft-wang-ietf-efit-00.

[4] ISC Bind. https://www.isc.org/software/bind.

[5] B. Clevenger, D. Nelson, and J. M. Bellardo. Hidra: Hierarchical
inter-domain routing architecture. In ACIT-ICT, 2010.

[6] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID sepa-
ration protocol (LISP). http://tools.ietf.org/html/draft-farinacci-lisp-
12.

[7]1 N.Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek.
Measuring the effects of internet path faults on reactive routing. In
Proc. of SIGMETRICS 2003.

[8] A. Feldmann, L. Cittadini, W. Miihlbauer, R. Bush, and O. Maen-
nel. Hair: hierarchical architecture for internet routing. In Proc. of
ReArch 2009.

[9] D. Krioukov, K. Fall, and A. Brady. On compact routing for the
internet. 2007.

[10] D. Krioukov, K. Fall, and X. Yang. Compact routing on internet-like
graphs. In INFOCOM 2004, volume 1, 2004.

[11] P. Mockapetris and K. J. Dunlap. Development of the domain name
system. In Proc. of SIGCOMM 1988.

[12] RFC 1955 -new scheme for internet routing and addressing (encaps)
for ipng. http://tools.ietf.org/html/rfc1955.

[13] RFC 3344 (rfc3344) - IP mobility support for IPv4.
http://www.fags.org/rfcs/rfc3344 . html.

[14] RFC 4271 - a border gateway protocol 4 (BGP-4).
http://tools.ietf.org/html/rfc4271.

[15] RFC 792 - INTERNET CONTROL MESSAGE PROTOCOL.
http://tools.ietf.org/html/rfc792.

[16] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. Hlp: a next generation inter-domain rout-
ing protocol. In Proc. of SIGCOMM 2005.

[17] The TCP/IP guide - mobile IP efficiency issues.
http://www.tcpipguide.com/free/t_MobileIPEfficiencylIssues.htm.

[18] TRRP. http://bill.herrin.us/network/trrp.html.

[19] P.E Tsuchiya. The landmark hierarchy: a new hierarchy for routing
in very large networks. Proc. of SIGCOMM 1988.

[20] wvarious. Collection of rfcs that define dnssec.
http://www.dnssec.net/rfc.

[21] X. Yang, D. Clark, and A. Berger. Nira: A new inter-domain routing
architecture. Networking, IEEE/ACM Transactions on, 15(4):775 —
788, Aug. 2007.

