802.11 Denial-of-Service Attacks Real Vulnerabilities and Practical Solutions

John Bellardo and Stefan Savage

Department of Computer Science and Engineering University of California, San Diego

Motivation

802.11-based networks have flourished

Home, business, health care, military, etc.

Security is an obvious concern

- Threats to confidentiality well understood and being addressed [WPA, 802.11i]
- Threats to availability (denial-of-service) not widely appreciated & not being addressed

802.11 DoS Attacks

- RF Jamming
 - Real threat, 802.11 highly vulnerable; not our focus
- Bandwidth consumption (flooding)
 - 802.11 has same vulnerability as wired nets; not our focus
- Attacks on 802.11 protocol itself
 - Easy to mount, low overhead, selective, hard to debug
 - Media access vulnerabilities
 - Management vulnerabilities
- This talk focuses on these DoS attacks, their practicality, their effectiveness and how to defend against them

Media Access Vulnerabilities

- 802.11 includes collision avoidance mechanisms
- Typically require universal cooperation between all nodes in the network
- Media access vulnerabilities arise from the assumption of universal cooperation
- Virtual carrier sense is an example of a media access mechanism that is vulnerable to DoS attacks

NAV Vulnerability

- Virtual carrier sense allows a node to reserve the radio channel
- Each frame contains a duration value
 - Indicates # of microseconds channel is reserved
 - Tracked per-node; Network Allocation Vector (NAV)
 - Used by RTS/CTS
- Nodes only allowed to xmit if NAV reaches 0

Simple NAV Attack: Forge packets with large Duration

Extending NAV Attack w/RTS

Conventional Wisdom

- NAV attack not a practical threat
 - Commodity hardware doesn't allow Duration field to be set
- But would be highly effective if implemented
 - Shut down all access to 802.11 network

Both wrong...

Commodity 802.11 hardware

- Firmware-driven microcontroller
 - Same code/architecture shared by most popular vendors (Choice Microsystems)
- Transmit path
 - Host provides frame to NIC and requests xmit
 - NIC firmware validates frame and overwrites key fields (e.g. duration) in real-time
 - Frame then sent to baseband radio interface
- Not possible to send arbitrary frames via firmware interface

How to Generate Arbitrary 802.11 Frames?

Key idea: *AUX/Debug Port allows Raw access to NIC SRAM*

- 1. Download frame to NIC
- 2. Find frame in SRAM
- 3. Request transmission
- 4. Wait until firmware modifies frame
- 5. Rewrite frame via AUX port

Why the NAV attack doesn't work

- Surprise: many vendors do not implement the 802.11 spec correctly
- Duration field not respected by other nodes

Time (s)	Source	Destination	Duration (ms)	Туре
1.294020		:e7:00:15:01	32.767	802.11 CTS
1.295192	. ??:ea:e7:0f	:93:ea:ab:df	0.258	TCP Data
1.296540	1.2952 - 1	.2940 :e7:0f	0	802.11 Ack
1.297869	: = 1.2 r	ns :e7:0f	0.258	TCP Data

Excerpt from a NAV Attack Trace

Simulating the NAV attack

- This bug will likely get fixed
 - Valuable for 802.11-based telephony, video, etc.
- So how bad would the attack be?
- Simulated NAV attack using NS2
 - 18 Users
 - 1 Access Point
 - 1 Attacker
- 30 attack frames per second
- 32.767 ms duration per attack frame

NAV Attack Simulation

Practical NAV Defense

- Legitimate duration values are relatively small
- Determine maximum reasonable NAV values for all frames
 - Each node enforces this limit
 - < .5 ms for all frames except ACK and CTS</p>
 - ~3 ms for ACK and CTS
- Reran the simulation after adding defense to the simulator

Simulated NAV Defense

Management Vulnerabilities

- 802.11 Management functions
 - Authentication (validate identity)
 - Association (picking access point)
- Most management operations unprotected
 - Easy to spoof with false identity
 - Source of vulnerabilities
- This problem is not being fixed
 - Most management frames unencrypted
 - 802.1x ports allocated after management functions take place
 - 802.11i has deferred addressing this problem

Deauth Attack

Attacker

802.11 management requires nodes associate before sending data

Deauth Attack

Node attempts to transmit data, but it can not

Deauth Attack Results

Practical Deauth Defense

- Based on the observed behavior that legitimate nodes do not deauthenticate themselves and then send data
- Delay honoring deauthentication request
 - Small interval (5-10 seconds)
 - If no other frames received from source then honor request
 - If source sends other frames then discard request
- Requires no protocol changes and is backwards compatible with existing hardware

Conclusion

- 802.11 DoS attacks require more attention
 - Easy to mount and not addressed by existing standards
- Should not depend on restricted firmware interfaces (can send arbitrary 802.11 pkts)
- Deauthentication attack is most immediate concern
 - Simple, practical defense shown to be effective

Hands-on Demonstration

- Attack implemented on an iPaq
- See me for a handson demonstration during the break

