
Numerical Ocean Modeling and Simulation with
CUDA

Jason Mak
California Polytechnic State University

Email: jamak@calpoly.edu

Paul Choboter
California Polytechnic State University

Email: pchobote@calpoly.edu

Chris Lupo
California Polytechnic State University

Email: clupo@calpoly.edu

Abstract—ROMS is software that models and simulates an
ocean region using a finite difference grid and time stepping.
ROMS simulations can take from hours to days to complete due
to the compute-intensive nature of the software. As a result, the
size and resolution of simulations are constrained by the perfor-
mance limitations of modern computing hardware. To address
these issues, the existing ROMS code can be run in parallel
with either OpenMP or MPI. In this work, we implement a new
parallelization of ROMS on a graphics processing unit (GPU)
using CUDA Fortran. We exploit the massive parallelism offered
by modern GPUs to gain a performance benefit at a lower cost
and with less power. To test our implementation, we benchmark
with idealistic marine conditions as well as real data collected
from coastal waters near central California. Our implementation
yields a speedup of up to 8x over a serial implementation
and 2.5x over an OpenMP implementation, while demonstrating
comparable performance to a MPI implementation.

I. INTRODUCTION

The Regional Ocean Modeling System (ROMS) is a free-

surface, primitive equation ocean model widely used by the

scientific community for a diverse range of applications [1].

ROMS evolves the components of velocity, temperature, salin-

ity and sea surface height forward in time using a finite-

difference discretization of the equations of motion, with

curvilinear coordinates in the horizontal and terrain-following

coordinates in the vertical [2]. Sophisticated numerical tech-

niques are employed, including a split-explicit time-stepping

scheme that treats the fast barotropic (2D) and slow baroclinic

(3D) modes separately for improved efficiency [3]. ROMS

also contains a suite of data assimilation tools that allow the

user to improve the accuracy of a simulation by incorporating

observational data. These tools are based on four dimensional

variational methods [4], which have a solid mathematical

foundation and generate reliable results in practice, but require

much more computational resources than a run without any

assimilation of data.
The accuracy and performance of any ROMS simulation is

limited by the resolution of the finite difference grid. Increas-

ing the grid resolution increases the computational demands

not only by the increase of the number of points in the domain,

but also because numerical stability requirements demand a

smaller time step on a finer grid. The ability to increase the

grid size to obtain a finer-grain resolution and therefore a

more accurate model is limited by the computing performance

of hardware. This is particularly true when performing data

assimilation, where the run-time can be orders of magnitude

larger than non-assimilating runs, and where accuracy of a

simulation is of paramount concern. In order for the numerical

model to give a desired accuracy with reasonable performance,

ROMS uses parallel computing to take advantage of its grid-

based model. A shared memory model using OpenMP enables

ROMS to take advantage of modern multi-core processors, and

a distributed memory model using MPI provides access to the

computing power of multi-node clusters.

Graphics processing units have steadily evolved from spe-

cialized rendering devices to general-purpose, massively par-

allel computing devices (GPGPU). Because of the relative

low cost and power of GPUs, these devices have become an

attractive alternative to large clusters for high-performance sci-

entific computing. With support for a large amount of threads,

an architecture optimized for arithmetic operations, and their

inherent data-parallelism, GPUs are naturally suitable for the

parallelization of large-scale scientific computing problems.

The success of GPUs as general-purpose computing devices

owes not only to their hardware capabilities but also to their

improved programmability. NVIDIA’s Compute Unified De-

vice Architecture (CUDA) framework has been instrumental

in giving developers access to the resources available in GPUs

[5]. Until recently, the language of the CUDA API was limited

to C/C++. In 2009, the Portland Group (PGI) worked with

NVIDIA to develop a CUDA Fortran compiler [6]. Because

Fortran is popular in the scientific community, the release of

this compiler opens up new avenues for parallelizing existing

applications. Researchers have been successful in using the

GPU to achieve speedup in a variety of Fortran applications,

including grid-based models similar to ROMS. The Weather

Research and Forecasting Model (WRF) is a mesoscale open-

source application written in Fortran [7] that has been success-

fully coupled with ROMS [8]. Michalakes and Vachharajani

rewrote a module in WRF as CUDA C and obtained speedup

[9]. Others have taken a step further and accelerated WRF

in its original language using CUDA Fortran [10][11]. In

Michalakes’ and Vachharajani’s work, they explore issues con-

cerning the use of GPUs for weather simulation, including the

capabilities of GPUs, the ease of re-engineering existing code

to work with CUDA, and the possible improvements to ease

development and increase performance [9]. The availability of

CUDA Fortran creates new avenues to explore these ideas.

In this work, we use a GPU to implement a new paralleliza-

tion of ROMS. Using CUDA Fortran, we exploit the existing

grid partitioning routines and tile access schemes of ROMS’

OpenMP implementation to map portions of a simulation onto

a GPU. We target GPUs based on NVIDIA’s new Fermi

architecture, which features enhanced performance for double

precision calculations. Our work focuses on the barotropic 2D

stepping module that occupies a significant proportion of time

in a simulation of a non-linear model. We discuss the existing

parallelization options and their tradeoffs. We test our CUDA

implementation on both idealized and realistic data and assess

its performance against that of OpenMP and MPI.

II. ROMS

ROMS is open-source software that is actively developed

by a large community of programmers and scientists. With

over 400,000 lines of Fortran code, ROMS employs various

equations in its numerical model [1]. ROMS models an ocean

region and its conditions as staggered, finite difference grids in

the horizontal and vertical. To simulate changing conditions,

ROMS uses split-explicit time-stepping in which a large time

step (baroclinic) computes 3D equations and iterates through

a sequence of smaller time steps (barotropic) that compute

depth integrated 2D equations (step2D) [12]. Users determine

the length and computational intensity of a simulation by

setting the resolution of the grid, the number of large time

steps (NTIMES), the amount of real time each step represents

(DT), and the amount of small discrete time steps (NDTFAST)

per large time step (with a minimum number to maintain

numerical stability). When translated into source code, ROMS

begins a simulation by entering a loop that iterates through

NTIMES large time steps, where the large time step is repre-

sented by a function named main3D. This function solves the

3D equations for the finite difference grid and calls the small

time step NDTFAST times. Because the 3D and 2D equations

are both applied to the entire grid, they serve as the targets of

parallelization.

III. PARALLELIZATION

To run in parallel, ROMS partitions the grid into tiles [12].

Users enter the number of tiles in the I direction and the J
direction. For example, setting NtileI to 4 and NtileJ to 2

results in a partitioned grid of tiles that consists of 2 rows

and 4 columns for a total of 8 tiles. The computations in

ROMS applies to each grid point, so tiles can be assigned to

separate processors. ROMS can be run in parallel with either

OpenMP or MPI, an option that is selected at compile time

[12]. Currently, ROMS does not support using both options at

once. Each paradigm is discussed in the next sections.

A. OpenMP

OpenMP is a parallelization model designed for shared

memory systems. For most modern hardware, this refers to

multi-core processors on a single machine. In both its C

and Fortran specifications, OpenMP requires programmers to

insert directives around for loops (or do loops in Fortran).

The OpenMP library automatically assigns different iterations

of a loop to multiple threads, which are then divided among

TABLE I
RUNTIME PROFILING DATA OF A SHORT ROMS SIMULATION

Function Runtime (s) Percentage
2D stepping 614 53.3%

GLS vertical mixing parameterization 261 22.6%
Harmonic mixing of tracers, geopotentials 43 3.7%
3D equations predictor step 41 3.5%
Corrector time-step for tracers 38 3.3%
Corrector time-step for 3D momentum 36 3.1%
Pressure gradient 35 3.0%
3D equations right-side terms 34 2.9%
Equation of state for seawater 25 2.2%
Other 26 2.3%

multiple processors. In ROMS, the for loops of interest are

located in main3D, where the 3D equations are solved. Each

function is applied to the entire grid by looping over the

partitioned tiles. Fig. 1(a) shows OpenMP directives applied to

a loop in ROMS. Modern multi-core processors are fast and

can perform computations over each tile quickly. However,

the ideal minimum tile size in the OpenMP implementation

is determined by the number of processor cores. Therefore,

the parallelism offered by OpenMP is coarse-grained and may

have difficulty scaling for larger problem sets.

B. MPI

Message Passing Interface (MPI) is a parallelization model

used for distributed memory systems. This paradigm com-

monly targets multiple machines operating in a networked

cluster. In ROMS, this paradigm enables a simulation to be

parallelized with an arbitrarily large number of processors.

As its name implies, MPI uses message passing to facilitate

memory management across several machines. The drawback

of this distributed model occurs when different processes

require data sharing during computation, and network trans-

fers incur overhead. In ROMS, MPI differs from OpenMP

because each partitioned tile is sent to a different machine

and computed as its own process [12]. Computations require

tiles to use overlapping boundary points, or halo points, from

neighboring tiles [12]. In a shared memory model, these halo

points can be accessed in a straightforward manner. MPI,

however, requires message passing to retrieve the halo points,

which adds network transfers to the cost of computation.

C. CUDA

GPUs have evolved from graphics accelerators to general

purpose compute units that provide massive parallelism with

their large number of cores. GPUs are designed for data

parallelism, where the same instructions are executed simul-

taneously on multiple data. In addition, the graphics legacy

of GPUs enable them to be well optimized for arithmetic

operations. Therefore, GPUs are well suited for performing

mathematical computations on large grid-based structures. To

provide high level access to the hardware resources of its

GPUs, NVIDIA provides the CUDA framework, an API based

on C/C++ [5]. Like OpenMP, the parallelization abstractions of

CUDA target a shared memory architecture. However, CUDA

differs from OpenMP in that it requires a large number of

1 DO my_iif=1,nfast(ng)+1
2 [...]
3 !$OMP PARALLEL DO
4 DO thread=0,numthreads-1
5 subs=numtiles/numthreads
6 DO tile=subs*thread,subs*(thread+1)-1,+1
7 CALL step2d (ng, tile)
8 END DO
9 END DO

10 !$OMP END PARALLEL DO
11 [...]
12 END DO

(a) OpenMP

1 CALL step2d_host_to_device()
2 DO my_iif=1,nfast(ng)+1
3 [...]
4 CALL step2d_kernel<<<dim_grid, dim_block>>>
5 (num_tiles,krhs(ng),kstp(ng),knew(ng),
6 nstp(ng), nnew(ng),PREDICTOR_2D_STEP(ng),
7 iif(ng), Lm(ng), Mm(ng), iic(ng),
8 nfast(ng),dtfast(ng), ntfirst(ng),
9 gamma2(ng), rho0, work_dev)

10 [...]
11 END DO
12 CALL step2d_device_to_host()

(b) CUDA

Fig. 1. OpenMP and CUDA parallelization

threads for optimal performance [5]. Unlike multi-threaded

environments on the CPU, context switching on the GPU bears

little cost. Therefore, GPUs facilitate large numbers of threads

and have better support for fine-grained parallelism.

Recently available technologies in both hardware and soft-

ware motivate us to pursue a CUDA implementation of ROMS.

In hardware, NVIDIA released a new generation of graphics

cards in 2010 based on an architecture named Fermi. Fermi

GPUs feature greater numbers of cores than previous models

and also have enhanced performance for double precision

calculations [13]. As a result, these compute cards have the

potential to enhance scientific computing applications like

ROMS, which require numerical precision. In software, PGI

ported the CUDA API into Fortran and released the CUDA

Fortran compiler in 2009. The compiler allows us to develop

our CUDA implementation directly in Fortran and to integrate

our work with the existing ROMS code.

1) Approach: In a typical CUDA application, the program-

mer allocates memory on the GPU, copies the relevant data

onto GPU memory, performs the compute intensive function (a

CUDA kernel) on the data, and copies the results back to CPU

memory [5]. We isolate a compute intensive portion of ROMS

to rewrite as a CUDA kernel that will run on the GPU. We

determine that the depth integrated 2D equations occupy over

50% of the total runtime in a simulation. The 2D equations

are computed as a function in the short time step, which is

called many times in the large time step. Therefore, step2D
is one of the most frequently called functions in a simulation.

Table I shows various simulation functions and the percentage

of runtime they contribute to a short, serial run of ROMS.

In our approach, we rewrite the step2D function as a

CUDA kernel that is launched in place of the function call.

First, we determine the variables that are used by step2D
and allocate appropriate space for them on the GPU. For

step2D, memory allocation needs to occur only once at the

beginning of the program. This may change in future work

when more functions are ported onto the GPU, because the

GPU’s memory may not be large enough to contain the data

used by all functions. Array variables are stored in global

memory, the largest but slowest memory on the GPU. We pass

scalar variables as arguments to the CUDA kernel so that they

will be stored in faster memory locations including registers

and cache. Since multiple iterations of step2D are called per

large time step, copying variable data between GPU memory

and CPU memory needs to take place only before and after

the iterations.

As a key step in any CUDA application, we must partition

the problem into subdomains that can be assigned to separate

GPU threads. For the task of dividing the model grid, we save

coding effort by taking advantage of the tile partitioning used

in the existing parallel implementations of ROMS. Because

both OpenMP and CUDA target a shared memory model, we

deduce that they can manage and use the tiles in similar ways.

In ROMS, the tiling abstraction used by step2D and other

functions is implemented via tile numbers that are passed as

arguments. Within step2D, the tile number is mapped to a

set of boundaries, which define the tile or subset of the grid.

To apply a function to every tile, the program loops through

the tile numbers and calls the function for each tile number.

To parallelize the loops and process the tiles concurrently, the

OpenMP implementation encloses the loops with directives. In

our GPU implementation, we assign each tile to an individual

CUDA thread. Each CUDA thread has a self-identifying ID

that can be retrieved from within the kernel. Instead of passing

a tile number as an argument, we use each thread’s unique ID

as the tile number. Fig. 1 shows the OpenMP parallelization

of step2D and the equivalent CUDA code.

To test the correctness of our implementation, we use a

small simulation to compare our output with that of the

OpenMP implementation. During a simulation, ROMS prints

out diagnostics messages at each large time step, which can

be used for basic testing. For more extensive verification,

we use the main simulation data that stores the values of

grid variables at specific times. To output this large set of

data, ROMS periodically writes to files in the NetCDF format

at a frequency specified by the user [12]. We dump the

contents of these NetCDF files into ASCII files to use for

comparison. The contents produced by our CUDA imple-

mentation matches that of the OpenMP implementation by

approximately 82%. We found that the differences were due

to the order in which OpenMP processes tiles, from higher

numbered to lowered numbered tiles. When we switched the

loop ordering to process tiles in ascending order, the outputs

from CUDA and OpenMP were identical. To address this issue

of thread ordering, additional work is needed to explore GPU

synchronization for ROMS.

Because the design of ROMS was not intended for CUDA,

we found that porting a function into CUDA and integrating

it into the code proved to be difficult tasks. The step2D
function is over 2,000 lines long, which meant the equivalent

CUDA kernel would be roughly the same length. Although the

majority of the original code is directly reused in the kernel,

any changes to the code to make the CUDA implementation

work (such as the renaming of variables) must be propagated

throughout the function. In addition, the step2D function has

over 50 parameters, and the total size of these parameters

are greater than the 256 KB limit allowed for CUDA kernel

arguments. To work around this limitation, we take advantage

of a feature in the CUDA Fortran compiler that allows the

GPU to access device variables outside the kernel but within

the same Fortran module. We change many of the parameters

in step2D to module variables. We also encountered challenges

relating to encapsulation. Many module variables in ROMS

are accessible from any file that imports the module. Because

step2D has a length of over 2,000 lines, the function uses

module variables from a large number of files. Since GPU

memory is separate from CPU memory, all variables used

by the function (and therefore the CUDA kernel) must be

identified and copied to GPU memory. These variables are

often spread across various modules of the program. This

lack of encapsulation may need to be considered in future

applications of CUDA in ROMS.

Another feature of the Fortran language that posed a

challenge for our CUDA implementation is the ability for

programmers to determine the way arrays are indexed. In

the OpenMP parallelization of step2D, threads index local

arrays differently depending on the tile they were assigned.

For example, the following is a possible mapping of tiles to

index ranges for an array of size n: tile 1 to [-2. . . n-3], tile 2
to [1. . . n], tile 3 to [4. . . n+3], and so on. In Fortran, the index

ranges of array variables must be specified at the beginning

of the function in the variables’ declarations as local variables

or dummy arguments. One possible solution is to declare the

arrays with a common indexing and rewrite all array accesses

to assume this common indexing. To save time, we instead

collapse all local arrays into one (to save kernel parameter

space) and store it in global memory. We pass a pointer to the

array as a single argument to the kernel, so that we can declare

it as a dummy argument inside the kernel. In the declaration

of the dummy argument, we use the thread ID (tile number) to

specify the array indices. By doing so, we maintain the existing

array accesses that expect different threads to use different

indexing. As this solution indicates, many of our approaches

are designed to save effort in coding.

IV. RESULTS

To evaluate the performance of our CUDA implementation,

we compare it to the existing serial, OpenMP, and MPI im-

TABLE II
THE UPWELLING CASE IS USED TO TEST STEP2D WITH DIFFERENT GRID

SIZES. THE TOTAL RUNTIME IN SECONDS IS OF 60 STEP2D ITERATIONS.

Grid size Serial OpenMP MPI CUDA

256 x 128 3.01 0.82 0.15 0.42
384 x 192 6.64 1.92 0.26 0.80
512 x 256 11.31 3.52 0.53 1.45

Fig. 2. Upwelling benchmark with various grid sizes.

plementations running on high performance hardware. For the

serial runs, we use an Athlon II processor clocked at 2.9 GHz.

For OpenMP, we use 2 Intel Xeon E5504 processors, priced at

approximately $450, for a total of 8 cores. To run ROMS with

MPI, we use a cluster of Intel Xeon 5130 processors that have

a total of 64 cores. The price of this cluster easily exceeds

$10,000. To test our CUDA implementation, we target the

GTX 470, a commodity GPU priced at approximately $300.

This card, based on the Fermi architecture, features 1280 MB

of memory and 448 cores clocked at 1.22 GHz [14]. In theory,

the GTX 470 requires 21,504 threads for full saturation.

In addition to CUDA, we use PGI’s Fortran compiler to

compile ROMS to run in serial and with OpenMP. We also

apply the -O3, -fastsse, and -Mipa=fast optimization flags.

The MPI implementation is compiled with gfortran using the

-O3, -frepack-arrays, and -ffast-math flags. When choosing

tiling layouts, we use the same number of tiles as there are

processors for the non-CUDA implementations. Because our

CUDA implementation maps each tile to a separate thread, we

set as many tiles as possible to saturate the GPU. Therefore,

the ideal tile size for the GPU is 2 x 2, the smallest allowed

in ROMS. In our second benchmark, we are unable to use the

smallest tile size due to the GPU running out of memory and

instead, we use 4 x 2 tiles. This limitation suggests that more

powerful GPUs may be needed for larger grid sizes.

A. Benchmarks

The upwelling ocean model, featuring a periodic channel

with shelves on each side, is a basic example used to test

ROMS [1]. The upwelling case uses internal, analytic func-

tions to create idealized conditions, which enables us to easily

modify its simulation parameters. We take advantage of this by

Surface Temperature, 05−Nov−2010

Longitude

La
tit

ud
e

−121.5 −121 −120.5

34.8

35

35.2

35.4

35.6

12

12.5

13

13.5

14

14.5

15

15.5

Fig. 3. Ocean surface temperature of a realistic ROMS simulation.

using the test case to benchmark the different implementations

of step2D with increasing grid sizes. When testing CUDA,

we include the transfer time between GPU and CPU memory.

Because not all functions have been ported to the GPU, the

functions on the CPU cannot proceed without the processed

data from the GPU and vice versa, so the costs of these

transfers are unavoidable. As Fig. 2 shows, the performance

of the GTX 470 falls between the multi-core processors that

run OpenMP and the MPI-enabled cluster. As the grids grow

in size, the performance gaps also increase. With the 512 x

256 grid, the CUDA implementation of step2D is nearly 8x

faster than the serial implementation and 2.5x faster than the

OpenMP implementation.

In addition to analytic functions, ROMS also allows users

to use externally collected data to establish the conditions of a

simulation, including initial conditions, boundary conditions,

and wind forcing. To test CUDA on a more realistic bench-

mark, we use observational data collected by autonomous

underwater vehicles from waters near California’s central

coast. This data had been collected to simulate the state of

an ocean region for the time period of 1–7 November 2010.

The simulation is configured to represent a rectangular domain

68 km wide and 170 km long, on a 256 x 512 grid, with

approximately 250 m between grid points. The model is also

forced with NOAA/NCDC blended 6-hourly 0.25-degree sea

surface wind stress [15]. Initial and boundary conditions are

taken from the Hybrid Coordinate Ocean Model (HYCOM)

1/12 degree global hindcast reanalysis [16]. The simulation

exhibits realistic features typically seen along the central

California coastal ocean, including cold upwelled water next

to the coast. Fig. 3 shows a graphical depiction of the ocean

region’s temperature properties. Although this benchmark is

more realistic than upwelling, Fig. 4 indicates that the per-

formance characteristics are roughly the same. Once again,

the CUDA implementation demonstrates a 2.5x speedup over

OpenMP, and despite being a much less costly device, the

GPU’s performance remains close to that of the MPI cluster.

Fig. 4. Comparison of step2D runtime in a realistic benchmark.

V. FUTURE WORK

Our work leaves many opportunities to increase the perfor-

mance of ROMS and demonstrate the power of GPUs. Because

the step2D kernel is over 2,000 lines long, many possible

optimizations remain including loop unrolling and divergence

removal. We have not attempted such optimizations in our

work. Shared memory is another promising optimization found

in various CUDA applications. Because GPUs are often lim-

ited by memory latency, and shared memory acts as a cache for

slower global memory, there is great potential for additional

speedup [5]. In addition to kernel-level optimizations, we can

investigate other parallelization models involving CUDA. We

can explore the use of multiple GPUs, which would enable

us to further divide the grid and have each GPU process a

smaller piece. We can also combine the use of CUDA with

MPI by implementing a model that uses a cluster of GPUs.

Integrating the two implementations would enable an MPI

process to use a GPU to perform the heavy computations

on the tile assigned to the process. Such a solution may be

scalable for very large grid sizes. Our work focuses specifically

on the step2D function that occupies a large percentage of the

runtime in a simulation. Although we succeeded in speeding

up the function, we can improve overall performance further

by running more functions on the GPU. Because we reused the

existing tile partitioning in ROMS to convert OpenMP loops

to CUDA code for step2D, all computations of ROMS that

are parallelized with OpenMP can be rewritten in a similar

fashion to run on the GPU. Therefore, it is possible to have

the majority of a ROMS simulation run entirely on the GPU.

VI. CONCLUSION

We accelerate a compute intensive portion of the ocean

modeling software, ROMS, using a GPU and CUDA Fortran.

Our work is motivated by the limitations on grid sizes and

accuracy caused by the increased runtimes of simulations. To

show the applicability of our work on real-world simulations,

we benchmark our implementation on observational data col-

lected from an ocean region. We discuss the approaches we

took and challenges we faced in integrating CUDA into an

existing Fortran project. We demonstrate that the use of GPUs

for massive fine grained parallelism in ocean modeling can

yield comparable performance to that of multi-core systems

and multi-node clusters. Furthermore, commodity GPUs can

be found in the consumer market at a fraction of the cost

of a cluster. These GPUs can run on a single machine,

require relatively little maintenance, and consume much less

power. GPUs continue to evolve with increasing numbers of

cores, higher clock speeds, larger memory sizes, and improved

programmability. We have shown the potential of these devices

in enhancing the performance of ROMS and similar large scale

ocean modeling applications. We believe these devices can aid

scientists by removing the performance bottlenecks that limit

the accuracy and scale of ocean simulations.

ACKNOWLEDGMENT

The authors would like to thank NVIDIA for equipment

donations.

REFERENCES

[1] ROMS. [Online]. Available: http://www.myroms.org
[2] D. B. Haidvogel, H. Arango, W. P. Budgell, B. D. Cornuelle,

E. Curchitser, E. Di Lorenzo, K. Fennel, W. R. Geyer, A. J.
Hermann, L. Lanerolle, J. Levin, J. C. McWilliams, A. J.
Miller, A. M. Moore, T. M. Powell, A. F. Shchepetkin, C. R.
Sherwood, R. P. Signell, J. C. Warner, and J. Wilkin, “Ocean
forecasting in terrain-following coordinates: Formulation and skill
assessment of the Regional Ocean Modeling System,” J. Comput.
Phys., vol. 227, pp. 3595–3624, March 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1347465.1347771

[3] A. F. Shchepetkin and J. C. McWilliams, “The Regional
Oceanic Modeling System (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model,” Ocean Modelling,
vol. 9, no. 4, pp. 347 – 404, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1463500304000484

[4] E. D. Lorenzo, A. M. Moore, H. G. Arango, B. D. Cornuelle,
A. J. Miller, B. Powell, B. S. Chua, and A. F. Bennett, “Weak
and strong constraint data assimilation in the inverse Regional
Ocean Modeling System (ROMS): Development and application
for a baroclinic coastal upwelling system,” Ocean Modelling,
vol. 16, no. 3-4, pp. 160 – 187, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1463500306000916

[5] “CUDA programming guide version 3.0,” NVIDIA, 2010.

[6] PGI CUDA Fortran compiler. [Online]. Available:
http://www.pgroup.com/resources/cudafortran.htm

[7] Weather research and forecasting model. [Online]. Available:
http://www.wrf-model.org/index.php

[8] M. Li, J. Hsieh, R. Saravanan, P. Chang, and H. Seidel, “Atlantic
hurricanes using a coupled regional climate model.” [Online]. Available:
http://sc.tamu.edu/research/chang/new/

[9] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical
weather prediction,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, april 2008, pp. 1 –
7.

[10] G. Ruetsch, E. Phillips, and M. Fatica, “GPU accelera-
tion of the long-wave rapid radiative transfer model in
WRF using CUDA Fortran,” NVIDIA. [Online]. Available:
http://www.pgroup.com/lit/articles/nvidia paper rrtm.pdf

[11] M. Wolfe and C. Toepfer, “Porting the WRF WSM52d kernel to GPUs
using PGI Accelerator Fortran,” The Portland Group, Oct. 2009. [On-
line]. Available: http://www.pgroup.com/lit/articles/insider/v1n3a1.htm

[12] K. S. Hedström, “Technical manual for a coupled sea-ice/ocean cir-
culation model (version 3),” U.S. Department of the Interior Minerals
Management Service, 2010.

[13] “NVIDIA’s next generation CUDA compute architecture: Fermi,” White
Paper, NVIDIA, 2009.

[14] GeForce GTX 470. [Online]. Available:
http://www.nvidia.com/object/product geforce gtx 470 us.html

[15] Blended sea winds. [Online]. Available:
http://www.ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html

[16] Hybrid coordinate ocean model. [Online]. Available:
http://www.hycom.org

