
O-‹#›

O-1

CPE 101 slides adapted
from UW course

Lecture 14:
Arrays

© 2000 UW CSE O-2

Overview

Concepts this lecture
Data structures

Arrays

Subscripts (indices)

O-3

Chapter 8

8.1 Declaration and Referencing

8.2 Subscripts

8.3 Loop through arrays

8.4 & 8.5 Arrays arguments and parameters

8.6 Example

O-4

Rainfall Data Revisited

General task: Read daily rainfall amounts and
print some interesting information about them.

Input data: Zero or more numbers giving daily
rainfall followed by a negative number (sentinel).

Example input data:

0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0

Empty input sequence:
 -1.0

O-‹#›

O-5

Rainfall Analysis
Possible things to report:

How many days worth of data are there?
How much rain fell on the day with the most
rain?
On how many days was there no rainfall?
What was the average rainfall over the
period?
On how many days was the rainfall above
average?
What was the median rainfall?

Can we do all of these while we read the data?
O-6

Rainfall Analysis (cont)

For some tasks (median, number of days above
average), we need to have all the data before we
can do the analysis.
Where do we store the data?

Lots of variables (rain1, rain2, rain3, rain4, …)?
Awkward
Doesn’t scale

Need something better

O-7

Data Structures

Functions give us a way to organize programs.
Data structures are needed to organize data,

especially:
large amounts of data
variable amounts of data
sets of data where the individual pieces are

related to one another
In this course, we will structure data using

arrays
structs
combinations of arrays and structs O-8

Arrays
Definition: A named, ordered collection of
variables of identical type

Name the collection (rain); number the elements
(0 to 6)

Example: rainfall for one week
Variable access:

rain[0] is 1.0

rain[6] is 0.0

2.0∗rain[4] is 2.8

...

 0

 6

.

.

.

1.0
0.2
0.0
0.0
1.4
0.1
0.0

double
rain[7];

1

O-‹#›

O-9

Array Terminology

type name[size];

double rain[7];

rain is of type array of double with size 7.

rain[0], rain[1], ... , rain[6] are the elements of
the array rain. Each is a variable of type
double.

0,1, ... , 6 are the indices of the array. Also
called subscripts.

The bounds are the lowest and highest
values of the subscripts (here: 0 and 6).

array declaration

size must be an int constant

O-10

Rainfall Analysis (cont.)

Strategy for processing data if we need all of it
before we can process it:

Read data and store it in an array

Analyze data stored in the array

Key idea: In addition to the array, we need to
keep track of how much of the array
currently contains valid data.

O-11

Keeping Track of Elements In-Use

Since an array has to be declared a fixed size,
you often declare it bigger than you think
you’ll really need

#define MAXRAINDAYS 400
int rain[MAXRAINDAYS];

How do you know which elements in the array
actually hold data, and which are unused
extras?

1. Keep the valid entries together at the front
2. Record number of valid entries in a separate
variable O-12

Keep the valid entries together

rain
0

MAX RAIN DAYS - 1

6
7

numRainDays

7

for (k=0; k < numRainDays; k++) {
 /* process rain[k] */
}

! ! ! !

O-‹#›

O-13

Print # Days Above Average

Algorithm:
Read data into an array
Compute average rainfall (from array)
Count # days above average (from array)
Print result

O-14

Declarations

 /* Maximum # of days of input data */
#define MAXRAINDAYS 400
int main(void) { /* rainfall data is stored in */

 /* rain[0..numRainDays-1] */
double rain[MAXRAINDAYS];

 int numRainDays ;
double rainfall; /* current input value */
double rainTotal; /* sum of input rainfall values */
double rainAverage; /* average rainfall */

/* # days with above average rainfall */
int numAbove;
int k;

O-15

Read Data Into Array

/* read and store rainfall data */
printf("Please enter rainfall data.\n");
numRainDays = 0;
scanf("%lf", &rainfall);
while (rainfall >= 0.0) {

rain[numRainDays] = rainfall;
numRainDays++;
scanf("%lf", &rainfall);

}

O-16

Calculate Average

/* calculate average rainfall */
rainTotal = 0;
for (k = 0; k < numRainDays; k++) {

rainTotal = rainTotal + rain[k];
}
rainAverage = rainTotal / numRainDays;

double rain[MAXRAINDAYS]; /* rainfall data*/
int numRainDays; /* # of data values */
double rainTotal; /* sum of input values*/
double rainAverage; /* average rainfall*/
int k;

We should make a test to
avoid a divide by zero

O-‹#›

O-17

Calculate and Print Answer

/* count # of days with rainfall above average */
numAbove = 0;
for (k = 0; k < numRainDays; k++) {

if (rain[k] > rainAverage)
numAbove++;

} /* Print the result */
printf("%d days above the average of %.3f.\n",

numAbove, rainAverage);

double rain[MAXRAINDAYS]; /* rainfall data*/
int numRainDays; /* # of data values */
double rainAverage; /* average rainfall */
int numAbove; /* # of days above average */
int k;

O-18

Index Rule
Rule: An array index must evaluate to an int
between 0 and n-1, where n is the number of
elements in the array. No exceptions!

Example:
 rain[i+3+k] /* OK as long as 0 ≤ i+3+k ≤ 6 */

The index may be very simple
rain[0]

or incredibly complex
rain[(int) (3.1 * fabs(sin (2.0*PI*sqrt(29.067))))]

O-19

C Array Bounds are Not Checked

#define DAYS_IN_WEEK 7

double rain[DAYS_IN_WEEK] ;
int index ;
index = 900 ;
...
rain[index] = 3.5 ; /* Is index out of range?? */

You need to be sure that the subscript value is in
range. Peculiar and unpleasant things can (and
probably will) happen if it isn’t.

O-20

Technicalities
An array is a collection of variables of one type
Each element can be used wherever a simple
variable of that type is allowed.

Assignment, expressions, input/output
An entire array can’t be treated as a single
variable in C

Can’t assign or compare arrays using =, ==, <,
…
Can’t use scanf or printf to read or write an
entire array
But, you can do these things one element at a
time.

O-‹#›

O-21

“Parallel” Arrays
A set of arrays may be used in parallel when more
than one piece of information must be stored for
each item.

Example: we are keeping track of a group of
students. For each item (student), we might have
several pieces of information such as scores

O-22

Parallel Arrays Example

Suppose we have a midterm grade, final exam
grade, and average score for each student.

#define MT_WEIGHT 0.30
#define FINAL_WEIGHT 0.70
#define MAX_STUDENTS 200
int num_student,

midterm[MAX_STUDENTS],

final[MAX_STUDENTS] ;

double score[MAX_STUDENTS] ;

O-23

Parallel Arrays Example

/* Suppose we know the value of num_students,
have read student i’s grades for midterm and
final, and stored them in midterm[i] and final[i].
Now:

 Store a weighted average of exams in array
score. */

for (i = 0 ; i < num_student ; i = i + 1) {

score[i] = MT_WEIGHT * midterm[i] +

 FINAL_WEIGHT * final[i] ;

}
O-24

Array Elements as Parameters
Individual array elements can be used as
parameters, just like other simple variables.
Examples:

printf(“Last two are %f, %f”, rain[5], rain[6]) ;

draw_house(color[i], x[i], y[i], windows[i]) ;

scanf(“%lf”, &rain[0]) ;

swap(&rain[i], &rain[i+1]) ;

O-‹#›

O-25

Whole Arrays as Parameters

Array parameters (entire arrays) work
differently:

An array is never copied
The array name is always treated as a
pointer parameter
The & and * operators are not used

Programming issue: in C, arrays do not
contain information about their size, so
the size often needs to be passed as an
additional parameter.

O-26

Array Parameter Example
#define ARRAY_SIZE 200
double average (int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ; i = i + 1)

total = total + a[i] ;
return ((double) total / (double) ARRAY_SIZE) ;

}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

O-27

Picture

#define ARRAY_SIZE 200
double average (
 int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ;

i = i + 1)
total = total + a[i] ;

return ((double) total /

(double) ARRAY_SIZE) ;
}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

O-28

Picture

#define ARRAY_SIZE 200
double average (
 int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ;

i = i + 1)
total = total + a[i] ;

return ((double) total /

(double) ARRAY_SIZE) ;
}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

caller

 x

O-‹#›

O-29

Picture

#define ARRAY_SIZE 200
double average (
 int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ;

i = i + 1)
total = total + a[i] ;

return ((double) total /

(double) ARRAY_SIZE) ;
}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

caller

 x

average

 a i total

O-30

Picture

#define ARRAY_SIZE 200
double average (
 int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ;

i = i + 1)
total = total + a[i] ;

return ((double) total /

(double) ARRAY_SIZE) ;
}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

caller

 x

average

 a i total

O-31

/* Set vsum to sum of vectors a and b. */
void VectorSum(int a[3], int b[3], int vsum[3]) {

int i ;
for (i = 0 ; i < 3 ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int main(void) {
 int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;

VectorSum(x , y , z);
printf(“%d %d %d”, z[0], z[1], z[2]) ;

}

Vector Sum Example

note:
no *
no &

O-32

Usually the size is omitted in an array
parameter declaration.

/* sum the vectors of the given length */
void VectorSum(int a[] , int b[] , int vsum[] ,

int length) {
int i ;
for (i = 0 ; i < length ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;
VectorSum(x , y , z , 3);

General Vector Sum

O-‹#›

O-33

Bonus Topic: Initializing Arrays

Review: "Initialization" means giving something
a value for the first time.

General rule: variables have to be initialized
before their value is used.

Review: Various ways of initializing

assignment statement

scanf (or other function call using &)

initializer when declaring

parameters (initialized with argument values)
O-34

Array Initializers
int w[4] = {1, 2, 30, -4};

/*w has size 4, all 4 are initialized */

char vowels[6] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’},

/*vowels has size 6, only 5 have initializers */

/* vowels[5] is uninitialized */

O-35

Array Initializers
int w[4] = {1, 2, 30, -4};

/*w has size 4, all 4 are initialized */

char vowels[6] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’},

/*vowels has size 6, only 5 have initializers */

/* vowels[5] is uninitialized */

Caution: cannot use this notation in assignment
statement:

w = {1, 2, 30, -4}; /*SYNTAX ERROR */ O-36

Incomplete Array Size

double x[] = {1.0, 3.0, -15.0, 7.0, 9.0};

/*x has size 5, all 5 are initialized */

But:

double x[]; /* ILLEGAL - why? */

O-‹#›

O-37

Summary

Arrays hold multiple values

All values are of the same type

Notation: [i] selects one array element

[0] is always the first element

C does not check array bounds!

Especially useful with large amounts of data

Often processed within loops
Entire array can be passed as a parameter

