
N

N-1

CPE 101 slides based on
UW course

Lecture 19: Strings

© 2000 UW CSE N-2

Overview

Concepts this lecture

String constants

Null-terminated array representation

String library <strlib.h>

String initializers

Arrays of strings

N-3

Chapter 9

Read Sections 9.1, 9.2, and 9.4:

9.1: String Basics

   Table 9.1 for summary of common
functions

9.2: String Assignment

9.4: String Comparison

N-4

Character Data in Programs

Names, messages, labels, headings, etc.

All of these are common in computer
applications

All involve characters: usually multiple
characters

So far, our ability to handle these things in
C is very limited

N-5

Characters and Strings

Character constants (literals): single quotes 

‘a’, ‘A’, ‘0’, ‘1’, ‘\n’, ‘  ’, ‘B’, ‘i’, ‘l’ , ‘\0’

null character

N-6

Characters and Strings

Character constants (literals): single quotes 

‘a’, ‘A’, ‘0’, ‘1’, ‘\n’, ‘  ’, ‘B’, ‘i’, ‘l’ , ‘\0’

null character

String constants (literals): double quotes

“Turner is a madman!"

“The answer is %.2f. \n"

N-7

String Representation (1)

Strings are stored in char arrays
Programming convention: a null character

‘\0’ is stored at the end

   string                    representation

"sample"
s a m p l e \0

N-8

String Representation (2)

‘\0’ included in string constants
automatically

Programmer must take pains to be sure it
is present elsewhere when needed

s a m p l e \0
N-9

String Representation (3)
Character arrays holding strings must

have room for ‘\0’ following the actual
data

The empty string "" occupies 1 char
Character and string constants are not

the same:
‘x’ and "x" are different.  How?

s a m p l e \0



N

N-10

Why the Null ?

This ‘/0’ is an interesting solution
to the reading or writing to the
character array problem, how?

(Think about the old sentinel
controlled loops….)

N-11

String Operations
Common needed operations:

Copy (assignment)
Compare
Find length
Concatenate (combine strings)
I/O

Unfortunately...

s a m p l e \0 N-12

What You Can’t Do
Always remember: Strings are arrays

They have the limitations of arrays

Can’t assign one string to another with =

Can’t compare strings with ==, <=

But there are library functions to help do
such things s a m p l e \0

N-13

String Library: <string.h>

Standard C includes a library of string
functions
use  #include <string.h>

Library functions:
Require proper null-terminated (‘\0’)

strings as arguments
Produce null-terminated strings as

results (usually!!!)
s a m p l e \0 N-14

String Length: strlen

strlen returns the length of its string argument
Does not count the null ‘\0’ at the end (why?)

Examples:
The length of "A" is 1
The length of "" is 0

k = strlen("null-terminated string");

stores 22 in k
N-15

Size (of array) vs. Length of
strings

What is the diff? Remember this!

length is # of chars not incl. ‘\0’
size of array includes (at least) the ‘\0’ in

addition to that.

N-16

/*  
 *   return the length of string  s, i.e., 
 *    number of characters before terminating '\0',
 *    or equivalently, index of first '\0'.
*/
int strlen( char s[ ] ) 
{

int n = 0; 
while ( s[n]  != '\0')

n = n + 1 ;
return n;

}

A strlen implementation

N-17

String Assignment: strcpy

strcpy(dest, source);

Copies characters from source to dest
Copies up to, and including the first ‘\0’

found
Be sure that dest is large enough to

hold the result!

N-18

String Assignment:
Examples

#include <string.h>
...
char medium[21] ;

char big[1000] ;

char small[5] ;

strcpy(medium, "Four score and seven" ) ;

medium: Four score and seven\0



N

N-19

String Assignment:
Examples
char medium[21 ];

char big[1000] ;

char small[5] ;

strcpy(big, medium) ;

strcpy(big, "Bob") ;

N-20

String Assignment:
Examples
char medium[21 ];

char big[1000] ;

char small[5] ;

strcpy(big, medium) ;

strcpy(big, "Bob") ;

big: Four score and seven\0?????...

N-21

String Assignment:
Examples
char medium[21 ];

char big[1000] ;

char small[5] ;

strcpy(big, medium) ;

strcpy(big, "Bob") ;

big: Four score and seven\0?????...

big: Bob\0 score and seven\0?????...

N-22

String Assignment Dangers

char medium[ 21];

char big[1000] ;

char small[5] ;

strcpy(small, big) ;

strcpy(small, medium) ;    /* looks like trouble... */

N-23

String Assignment Dangers

char medium[ 21];

char big[1000] ;

char small[5] ;

strcpy(small, big) ;

strcpy(small, medium) ;    /* looks like trouble... */

small: Bob\0?

N-24

String Assignment Dangers

char medium[ 21];

char big[1000] ;

char small[5] ;

strcpy(small, big) ;

strcpy(small, medium) ;    /* looks like trouble... */

small: Bob\0?

small: Four score and seven\0

N-25

What went wrong?

NOTE AND EMPHASIZE -

writing off the end of the array is NOT a
compiler (syntax) error!

It does NOT necessarily give a runtime
error either, the program may run with
corrupted data!

(subtle and very difficult bugs may
result in your program output!) N-26

A strcpy implementation

/* copy source string into dest, stopping with '\0' */
void strcpy(char dest[ ], char source[ ])
{

int i = 0;
while (source[ i ]  != ‘\0’) {

dest[ i ] = source[ i ] ; 
i ++;

}
dest[ i ] = ‘\0’ ;

}
/* why write the ‘\0’ outside the loop? */

N-27

String Concatenation: strcat
To append means to place one string directly

after another
”geek" appended to ”csc" should result in

”cscgeek"

strcat(dest, source);

Appends characters from source to dest
Copy is stored starting at first ‘\0’ in dest
Copies up to, and including the first ‘\0’ in

source
Be sure that dest is large enough!



N

N-28

Using strcat (1)
#include <string.h>
...
char str1[5] , str2[5] , str3[11];

strcpy(str1, "lamb");
strcpy(str2, "chop");

str1     ? ? ? ? ?

str3    ? ? ? ? ? ? ? ? ? ? ?

str2     ? ? ? ? ?

N-29

Using strcat (1)
#include <string.h>
...
char str1[5] , str2[5] , str3[11];

strcpy(str1, "lamb");
strcpy(str2, "chop");

str1     ? ? ? ? ?

str3    ? ? ? ? ? ? ? ? ? ? ?

str2     ? ? ? ? ?

    l a m b \0

N-30

Using strcat (1)
#include <string.h>
...
char str1[5] , str2[5] , str3[11];

strcpy(str1, "lamb");
strcpy(str2, "chop");

str1     ? ? ? ? ?

str3    ? ? ? ? ? ? ? ? ? ? ?

str2     ? ? ? ? ?    c h o p \0

    l a m b \0

N-31

Using strcat (2)

strcpy(str3, str1);
strcat(str3, str2);

str1     l a m b \0

str3    ? ? ? ? ? ? ? ? ? ? ?

str2    c h o p \0

N-32

Using strcat (2)

strcpy(str3, str1);
strcat(str3, str2);

str1     l a m b \0

str3    ? ? ? ? ? ? ? ? ? ? ?

str2    c h o p \0

    l a m b \0 N-33

Using strcat (2)

strcpy(str3, str1);
strcat(str3, str2);

str1     l a m b \0

str3    ? ? ? ? ? ? ? ? ? ? ?

str2    c h o p \0

    l a m b \0    c h o p \0

N-34

String Comparison: strcmp

N-35

String Comparison: strcmp

strcmp(s1, s2);

Compares s1 to s2 and returns an int
describing the comparison

Negative if  s1 is less than s2
Zero if  s1 equals s2
Positive if  s1 is greater than s2
(why does this make sense?) N-36

Comparing Strings

strcmp compares corresponding characters until

it finds a mismatch.

"lamb" is less than "wolf"

"lamb" is less than "lamp"

"lamb" is less than "lambchop”

‘\0’ ought to come first or last?

(How natural is all this in C?  Recall ascii …

and also Unicode.)



N

N-37

Using strcmp (1)

Don't treat the result of strcmp as a Boolean!

Test the result as an integer

if (strcmp(s1,s2) == 0)
printf("same\n");

(what integers represent True and False in C?
Now you see the problem?  See next slide.)

N-38

Using strcmp (2)

If you treat the result of strcmp as a
Boolean, it probably won’t do what you
want

if (strcmp(s1,s2))
printf("yikes!");

prints yikes if s1 and s2 are different!

N-39

String I/O
scanf and printf can read and write C

strings
Format code is %s
‘\0’ termination handled properly

Be sure there’s enough space for data
plus ‘\0’ on input!

#define MAX_INPUT 2000
char buffer [MAX_INPUT];
…
scanf("%s", buffer);

          /* no ‘&’ needed here, why? */

N-40

Security

Notice that buffer could be
overwritten, scanf does not
check bounds.

An attacker can write his (her!)
own code in the memory
locations after buffer and run
their own code on your system.

N-41

Many Functions in <string.h>

strcat, strncat concatenation

strcmp, strncmp comparison

strtod, strtol, strtoul conversion

Lots of others: look in Appendix B.

Related useful functions in <ctype.h>
operations on a single char:
convert case, check category, etc.

See a textbook or reference manual N-42

Many Functions in <string.h>

strcat, strncat concatenation

strcmp, strncmp comparison

strtod, strtol, strtoul conversion

Lots of others: check your favorite reference.

Related useful functions in <ctype.h>
operations on a single char:
convert case, check category, etc.

N-43

Using Libraries of Functions
To use strings effectively in C, use functions
from string.h

Using libraries is very typical of C programming

ANSI C standard libraries such as stdio.h,
string.h, ctype.h

Application-specific libraries: (thousands of
them exist)

You can’t be an effective programmer without
being able to quickly master new libraries of
functions, but …. N-44

String functions note

Be sure you understand how to
use functions before utilizing
them in your programs (labs,
etc.)

N-45

Bonus: String Initializers

all equivalent



N

N-46

Bonus: String Initializers
char pet[5] = { ‘l’, ‘a’, ‘m’, ‘b’, ‘\0’ } ;

char pet[5] ;
pet[0] = ‘l’ ;   pet[1] = ‘a’ ;  pet[2] = ‘m’ ;
 pet[3] = ‘b’ ; pet[4] = ‘\0’ ;

char pet[5] = "lamb" ; /* careful with length! */

But not:
char pet[5];
pet = “lamb” ;      /* No array assignment in C */
Remember that initializers are not assignment statements!

And, remember the array length for “lamb” is 5, need the
null character at the end!

all equivalent

N-47

Bonus: Arrays of Strings
char month[12][10] = {

"January",

"February",

...

"September", /* longest month: 9 letters */

...

"December" } ;

...

printf ("%s is hot \n", month[7] );      /* August */ N-48

Strings Summary

Definition: Null-terminated array of char

Strings are not a unique type in C (a
special kind of an array…)
They share most limitations of arrays
scanf/printf: %s
<string.h> library functions

Assignment: strcpy
Length: strlen
strcat and many others

Major Pitfall: overrunning available space


