"An Investigation of the Therac-25 Accidents"

by Nancy G. Leveson and Clark S. Turner

slides adapted from the article and a graduate presentation by Catherine Schell

Development of the Therac-25

- Early 1970's
 - AECL and CGR (Fr.) collaborated
 - developed Therac-6: 6 MeV accelerator that produced X-rays only (cobalt)
 - Later, developed Therac-20: 20 MeV dual-mode accelerator
 - Both versions of older CGR machines
 - augmented with computer control

Development of the Therac-25 cont'd

- Mid 1970's: AECL "double-pass"
 - used in design of Therac-25
 - what was good about it?
- 1976: first hardwired prototype Therac-25
- 1981: AECL and CGR broke up :-)

Development of the Therac-25 cont'd

- 1982: Commercial version of Therac-25
- March 1983: AECL safety analysis assumptions:
 - Programming errors reduced by extensive testing;
 - software errors not included in analysis
 - Software does not degrade or wear out
 - Computer execution errors caused by faulty hardware and random errors due to noise

Important Features of the Therac-25

- AECL designed Therac-25 to depend on computer control
 - Th-6 and Th-20 had could function without computer control
- Th-25 software replaced much hardware in safety functionality
 - why?
- Software in the Th-6 and Th-20 was reused in the Th-25
 - why?

Therac-25 Software

- Real time exec, PDP-11 ass'y code
 - Four major components:
 - Stored data
 - Scheduler
 - Set of critical and non-critical tasks
 - Interrupt services
- Exec allows concurrent access to shared memory
 - Synchronization using data stored in shared variables
 - "Test" and "set" operations for shared variables are not indivisible

Major Event Timeline: 1985

June

- 3rd: Marietta, GA "problem"
 - Hospital phys called AECL ask if overdose possible
 - AECL reply three days later: "NO!"

July

- 26th: Hamilton, Ontario, Canada mild overdose seen
 - machine shut down with "H-tilt" message
 - AECL notified, cause surmised to be microswitch failure
 - AECL could not repeat the error condition though

August

- 1st: Four users in US advised
 - check ionization chamber to verify postion
 - treatment should be discontinued if "H-tilt" error message
 - and incorrect dosage displayed

Major Event Timeline: 1985 cont'd

September

- AECL "fixes" microswitch "problem"
 - notifies users of radical improvement in safety
- Independent consultant (Hamilton) recommends potentiometer on turntable
 - analog (redundant) indication of position

October

- Georgia patient files suit against AECL and hospital
 - still not known that it was a Th-25 accident

Major Event Timeline: 1985 cont'd

November

- 8th: Letter from CRPB to AECL
 - asks for hardware interlocks and software changes
 - redesign microswitch
 - cancel treatment in event of dose rate errors
 - change to treatment "pause" to "suspend" with serious errors and after one try
 - new test procedures and command formats (UI)

December

- Yakima, WA mild overdose
 - looked like "water bottle" burns to MD's

Major Event Timeline: 1986

- January
 - Atty (Hamilton) demands potentiometer on turntable
 - how hard is this?
- 31st:AECL from Yakima: possibility of overdose
- February
 - 24th: AECL to Yakima: "overdose not possible, no other incidents had occurred..."

Major Event Timeline: 1986 cont'd

March

 21st: Tyler, TX overdose: AECL notified; AECL claims overdose impossible, no other accidents occurred, suggests electrical problem in hospital as cause

April

- 7th: Tyler machine put back in service after no electrical problem found
- 11th: Second Tyler overdose: AECL notified;
 AECL finds software problem
- 15th: AECL files accident report with the FDA

Major Event Timeline: 1986 cont'd

- May
 - 2nd: FDA declares Therac-25 defective; FDA asks for CAP and proper notification of users
- June
 - 13th: AECL submits CAP to FDA
- July
 - 23rd: FDA responds, asks for more info
- August
 - First user group meeting

Major Event Timeline: 1986 cont'd

- September
 - 26th: AECL sends FDA additional info
- October
 - 30th: FDA requests more info
- November
 - 12th: AECL submits revision of CAP
- December:
 - Therac-25 users notified of software bug
 - 11th: FDA requests further changes to CAP
 - 22nd: AECL submits second revision of CAP

Major Event Timeline: 1987

January

- 17th: Second Yakima, WA overdose
- 26th: AECL sends FDA revised test plan

February

- Hamilton clinic investigates first accident, concludes overdose occurred
- 3rd: AECL announces changes to Therac-25
- 10th: FDA notifies AECL of adverse findings declaring Therac-25 defective under US law, asks AECL to notify users not to use it for routine therapy; Health Protection Branch of Canada does the same.

Major Event Timeline: 1987 cont'd

- March
 - Second user group meeting
 - 5th: AECL submits third revision of CAP
- April
 - 9th: FDA requests additional info from AECL
- May
 - 1st: AECL submits fourth revision of CAP
 - 26th: FDA approves CAP subject to final testing and safety analysis

Major Event Timeline: 1987 cont'd

- June
 - 5th: AECL sends final test plan and draft of safety analysis to FDA
- July
 - Third user group meeting
 - 21st: AECL submits fifth revision of CAP

Major Event Timeline: 1988

- January
 - 29th: Interim safety analysis report issued
- November
 - 3rd: Final safety analysis report issued

Lessons Learned

- Do not put too much confidence in the software.
- Do not remove standard hardware interlocks when adding computer (software) control.
- Software should not be solely responsible for safety.

- Systems should not be designed wherein a single software error can be catastrophic.
- Software error should not be the last possibility investigated in an accident.
- Engineers need to design for the worst case.

- Companies building hazardous equipment should include
 - hazard logging and tracking
 - incident reporting
 - incident analysis
 - as part of quality control procedures.
- Risk assessment numbers should be meaningful, and statistics should be treated with caution.

- Documentation is important.
- Software quality assurance practices and standards should be established.
- Designs should be simple.
- Error logging or software audit trail reporting should be designed into the software from the beginning.
- System testing alone is not adequate; there should also be testing and formal analysis at the module and software levels.

- Safety-critical software projects must incorporate safety-analysis and design procedures.
- Reusing software modules does not guarantee safety in the new system.
- Software engineers need additional training and experience when working on safety-critical systems.

- Software engineers need
 - better training in interface design, or
 - more input from human factors engineers.
- There must be recognition of the potential conflict between userfriendly interfaces and safety.

- Reasons for design decisions must be recorded.
- Users of safety-critical systems should be involved in resolving problems.