Copyright Violation Exercise

Purpose:

Code can be stolen just like anything else. Copyright law should protect the author from thieves. However, code can be altered just enough to appear to be something original, when it is in fact the product of copying. How can you tell what code is valid, and what code is a violation? What constitutes a violation of a software copyright?

Procedure:

Part 1: Warmup

Sample 1:
```java
for(temp = mHead; temp.next != null &&
    mCompr.compare(temp.next.data, newNode.data) >= 0;
    temp = temp.next);
```

Sample 2:
```java
temp = mHead;
while(temp.next != null &&
    mCompr.compare(temp.next.data,newNode.data) >= 0)
    temp = temp.next;
```

1. What qualities about these two code fragments reflect copied code?
2. What qualities about these two code fragments reflect unique code?
3. Would you consider the similarities of this simple algorithm to be a case of cheating or not? Why?

Part 2: Hands-on Copyright Violations

Problem:

Model a list of individuals that stores his or her name and age. The list should remain sorted by age, with the oldest individuals listed first.

Requirements:
- must implement a linked list data structure
- must use Java or C
- the following methods must be implemented (return values can vary, based on implementation):

  ```java
  insert( name, age )
  ```
 - inserts new node into linked list
 - new nodes are inserted in order by age
 - ties are dealt with by inserting at the first occurrence of tied age
- names must be unique

\[\text{delete(name)} \]
- removes node with given name

b. Obfuscate the given code solution
 You will be provided a solution by the professor. With the code given, modify it so that it appears to be an original piece of code. It must maintain exact functionality.

Valid Code Transformations:
1. change variable names
2. relocate blocks of code
3. modify (add or remove) comments
4. add additional, non-functional code
5. modify loop structure (while -> for, etc.)

When your code is completely modified, run the tests again to be certain that it still performs the same function. Then, hand-in the new code. Be certain to have your group name on your code.

c. Compare and Analyze
 Your group will be given two solutions to the specification in (a). One of these is the solution from another group in the class; the other is an obfuscated version of the solution given to each group in (b).
 1. Which code selection is the “copyright violation”?
 2. What led you to choose the one that you did? Make specific references to the code, and perhaps the transformations that the “violators” might have done.

Part 3: Conclusions
1. Has cheating affected your life as a computer science student at Cal Poly? Have you seen it affect your peers? What are the similarities between copyright violations and cheating on programs in college? Differences?
2. If code is copied with permission from a peer or co-worker, is it still unethical or objectionable? How does this fit into SECOE (provision 7.02, 7.08)?
3. Two implementations can be almost identical, but not resultant from copying, while two others might only have a passing semblance, but one is the product of rampant copying. How does this fact complicate the task of a teacher, or lawyer, or juror trying to determine what is copied and what is original? Address this issue in a substantial paragraph response.
4. What has your group taken away from this lab exercise? What can be done to improve it?
Part 4: Deliverables
1. Individual responses to questions in Part 1
2. Original group code from Part 2
3. “Stolen” and obfuscated code from Part 2
4. Responses to questions in Part 2.c.
5. Group conclusions