When Bad Code Comes From Good Specs

Clark Savage Turner, J.D., Ph.D.,
J. Kris Fox
Department of Computer Science, Cal Poly State University
San Luis Obispo, CA. 93407 USA
(805) 756 6133
csturner@calpoly.edu, jfox@calpoly.edu

www.csc.calpoly.edu/~csturner

ABSTRACT

Software code that fails to properly implement a well
defined specification involving safety results in
executable code that is “more dangerous than it was
designed to be.” This paper deals only with mistakes
programmers make in implementing the design safety
specifications. It is shown that such defects in code, if
they are a substantial cause of personal injury, result in
liability without fault — that is, “strict liability.” License
disclaimers are ineffective in such cases and the best
process in the world is no legal defense. Suggestions are
given to lower the risk of liability for such defects in
safety-critical code.

KEYWORDS: software products liability, defect,
specification

1. INTRODUCTION

Homo Faber, “man, the maker.” We like to build things,
new things that have not existed before. Things that have
an impact in the world. Product developers use science,
experience and intuition to create new artifacts with
desired properties. Aircraft, automobiles, nuclear power
plants are a few interesting examples. The benefits to
society are many: cheaper, better, faster products that
prove useful to humans.

If society had little desire for such progress, safety could
be reasonably assured [1]. Long established, safe designs
could be carefully improved in tiny increments and
proven processes could be instantiated for development
and production. Verification techniques could be highly
refined. Technical progress would then be limited by the
developers’ ability to fully understand and predict the
behavior of their creations. This limitation would slow
progress to a near halt. The expense involved in
designing provably safe products would limit their utility,
practicality and availability to mass markets. The
allocation of resources devoted to technical progress
would be severely limited.

Society does not require perfect safety. We are willing to
sacrifice a measure of safety for more performance,
versatility and economy.' Many risk tradeoffs are
acceptable, but not all are. The law of tort, in recognition
of greater social goals of progress, does not always
allocate the costs of accidents to the product developers.
When the activity that led to the accident is considered
more socially valuable than the risk, the developers may
externalize the costs of the accident, the victim is left to
fend for himself. However, if the social value of the
danger outweighs its benefits, the developers may be
forced to internalize the costs of the accidents. Socially
irresponsible risk-taking and innovation are given an
economic disincentive in the market [2].

Software is a relatively new artifact to enter the world of
risk. It appears to be novel among other artifacts of the
design activity: it doesn’t break or wear out, it is not
easily visualized in physical space, it consists of machine
executable instructions and not physical components. It
has been used to control nuclear power plants,
commercial avionics, automobile safety systems and
medical therapy devices. For instance, in the most widely
publicized software product accident to date, the Therac-
25 medical linear accelerator caused several deaths and
injuries over a two year period. An FDA investigation
revealed that the software played a significant role in the
accidents [3]. Software designers know that they cannot
guarantee the safety of these systems, even with unlimited
resources [4]. As society moves toward increased use of
computer control of safety systems, we should expect
accidents and resulting lawsuits.

Two main levels of tort liability have been developed to
deal with personal injuries due to the products of
engineering: strict liability (liability without fault) and
negligence (liability based on lack of due care). The
different risk management implications of each legal
standard are significant and are discussed elsewhere [5].
Suffice it to say that the difference is very important to
our software engineering processes.

! Just consider the highway speed limit. If society wanted
near perfect safety, the limit could be lowered to 10
m.p.h. This is unlikely to happen.

There is yet no common law decision that defines the
level of liability for different classes of software defects.
However, the law of products liability has established its
own classification of product defects and through
common law cases, has developed several critical
characteristics to distinguish the standard of liability for a
given defect. In this paper, we discover and assemble the
relevant distinguishing characteristics that are used to
classify product defects. We then propose some common
types of defects in code where specifications are not
correctly implemented. The legal characteristics are then
applied to the code defects to determine the proper
standard of liability. It is shown that, for this narrowly
defined set of code defects (code “mistakes”), strict
liability is the proper standard to be applied in cases
where personal injury results.

2. NOTIONS OF DEFECT

We first note two distinct notions about “defect.” The
first notion is based on social requirements for worth or
utility and is expressed in reasonable user expectations.”
The second notion points to a more technical idea about
whether the product, as implemented, satisfies its
technical requirements and specifications. This notion is
captured in a software engineering text as a “deviation of
the observed behavior from the specified behavior” [7].
Notice that both notions of defect appear in software. The
first is found in cases where unexpected behavior of the
software is rooted in the specification itself, not a
deviation from it.> The other form of defect, the concern

of this paper, is based on a standard internal to our
development processes: does the implementation satisfy
its own specification? Did we build the product we
planned to build? Did we turn out a random variation that
injured someone?

3. THE PROBLEM

Our focus is code defects wholly unrelated to engineering
judgment. We only consider “mistakes” made by the
programmer in implementing a well defined

? This sort of defect appears in the design of automobiles
whose design is not considered “safe enough” by social
standards: an economy car that has a gas tank placed
where rear-end impact is quite likely to cause explosion is
considered defective. This is bolstered by the fact that an
inexpensive modification to tank placement would
increase safety by orders of magnitude [6].

* This can result from mismapping real user requirements
into the specification or making particularly poor design
decisions respecting the users in general. In that sense, it
is a high level validation issue: validating software
specifications to the requirements of society at large.
Other research shows such social requirements can be
derived from the law of tort. See generally [2].

specification.! Defects such as “off by one”, incorrect
variable initialization and passing an incorrect parameter
to a function can be viewed as simple human mistakes.’
We do not know how to completely avoid such defects
nor can we test to find every one [8]. Such is the problem
of any large, complex development project.

The thing about software that exacerbates this problem
(common to many other kinds of products) is that
programs are binary in nature, that is, a “small” mistake in
the code can have unpredictably large consequences [9].
Thus, simple coding mistakes such as those discussed
here can have serious consequences,. They’ve been
shown to be contributing factors in particularly horrible
personal injury cases [3]. They continue to plague the
industry despite our best efforts.® We find that the law
generally places embedded safety-critical software under
the “products” rubric [10]. We also know that, in personal
injury cases involving products, license disclaimers have
no legal effect.” Software developers must respond and
defend themselves from lawsuits where software appears
to be a contributing cause to an accident involving
personal injury.

How will this affect our safety-critical software
development processes? What are cost effective
measures that can be applied to help reduce the risks of
large liability awards due to simple faulty coding? These
questions motivate this paper. In particular, we ask the
question, “what legal standard is applied to failures of
code to meet our software specifications for safety?”’ It
sounds like a legal question and it is. However, it is
equally a technical question. The question is important
since two very different legal standards may be applied
depending on the class of the defect. One standard,
negligence, allows the defense of “due care” and focuses
on the adequacy of the development process. The other
standard, strict liability, allows liability “without fault”
where due care and the quality of the development
process is irrelevant. The negligence standard will be
raised when the “foreseeable risks of harm ... could have
been reduced or avoided by the adoption of a reasonable
alternative design ...” (a design standard). The strict
liability standard will be raised when “the product departs

* A specification that is complete, consistent and correct
respecting its subject matter. Note that this paper does
not deal with a programmer’s intentional “redesign” that
conflicts with a safety design specification. That is for
another paper.

’ Late nights, little sleep, too much coffee, stress:
common to many programmer’s lives. These things are
known to contribute to mistakes in code.

® This is nearly universally recognized, see [4] for
explanation. Also see the Risks Forum on USENET for
current discussions and examples of such accidents.

7 This is long established when dealing with personal
injuries due to faulty products. See [11], [12], and [13] for
further details.

from its intended design ...” [13] (a product standard).
These statements of law instructive, but are broad
summaries of general principles. Therefore the authors
searched the literature and common law cases for specific
factors and analogies used in actual court cases to
distinguish the classes of defects (and standards of
liability.) These factors will be used to place simple
coding mistakes into the proper classification and
determine the appropriate standard of liability.

4. LITERATURE

Though not focused on the particular issues raised here,
there has been some discussion of strict liability for
defective software in the literature. One engineer makes
the claim that unintentional failures to meet software
specifications in code would rarely (or never) occur
because of the precise syntax of programming languages
[14]. This argument has some merit as far as the progress
we’ve made in creating programming languages that
obviate a few types of code defects. However, this
progress cannot eliminate such defects in code as will be
shown in the examples.

Some authors argue about whether such a strong legal
standard, strict liability, should apply to software at all.
They cite distinctions between software and other, more
traditional products as a basis for the arguments. These
arguments have not yet been answered in all Courts but
the weight of the evidence is in favor of the application of
strict liability where software is used to control a safety-
critical embedded system. Some explain the applicability
of strict liability to software by the fact that the injury
may be caused by a product that was more dangerous than
it was designed to be. This sort of defect yields no social
or technical progress so there is no reason to allocate the
costs to the victim [10].

The authors have further found that much of the
discussion about software liability is clouded by syntactic
problems with words such as “product” and
“manufacturing” as used in the law. The actual semantic
content of these legal terms is not constrained by
simplistic associations with older technologies.® We

make an effort to keep the vocabulary clear in this paper.’

¥ Terms such as “product” and “manufacturing defect”
often carry connotations of older technologies while the
common law of tort considered here depends on
underlying principles, not mere names. Note that the
situation is similar in the software engineering domain:
the term “window,” for example, is not made of glass,
does not shatter. The term used in software carries the
older concept of glass window to a new context.

? In particular, we do not use the term “manufacturing
defect” as applied to software code. The underlying
concepts apply perfectly naturally, though.

5. LEGAL STANDARDS,
SOFTWARE REALITY

Though the law of products liability and its defect
classification has not yet been applied directly to
software, there is a rich history in caselaw where defects
are distinguished in other sorts of products and full
explanation is detailed. Five basic factors found in the
law have been listed below with a short explanation for
each. The factors may not be disjoint, however, the
authors found them useful at least as alternative ways to
think about classification of product defects in software.

e Standard Used for Comparison: Design
(exhibited in specifications) is judged
“defective” by a social standard. The Court or
jury must decide whether the engineers’ design
intention reasonably balances social risks and
utility. In contrast, mistakes in implementation
are found by comparison of the product to the
developers’ own technical standards [15]. If the
product is defective by internal technical
standards, it is more dangerous than it was
designed to be! [12]

* Degree of Human Intention: Design defects
may be avoided by a socially responsible risk-

utility consideration during design. Mistakes in
implementation cannot be eliminated this way,
they are not the result of “consideration” of
alternatives at all, but are failures in the process
of construction of the product [12].

* Avoidability of the Danger Design defects in
specifications involve conscious decisions of the
design engineers. Mistakes in implementation
are not the result of conscious decisions but of
inadvertence. The developer knows that a
certain amount of imperfection results from the
construction process, regardless of the care taken
in quality control [12].

* Defect Visibility: Design features define the
product’s functionality. Thus, any defect in
design is a consciously chosen characteristic. In
this sense, the defects are “known” and “visible”
to anyone who understands the product.
Mistakes in implementation are not seen or
known since they are latent. They are unplanned
product “features.”

* Consumer Participation in Risk Reduction:
Some design features include necessary risks in
their beneficial use.'” Consumers may then

' Consider the knife. Should manufacturers of knives be
held liable when a consumer gets cut by the knife? The
cutting is the feature the consumer desires from the

participate in risk reduction in order to enjoy the
product’s benefits. Mistakes in implementation
are latent defects and consumers cannot

generally participate in risk reduction [16].

The factors found above are summarized in table 1.

Failure to meet | Failure to
social meet own
expectation specification
Standard external, a social | internal, the
used for | standard for risk- | developer’s
comparison utility decisions | own standard
is considered
Degree of | conscious inadvertent,
human decision of the | “mistake”
intention design engineers
Avoidability avoidable by | unavoidable
of the danger | proper risk-
utility
consideration
Defect visible part of | latent, not
“visibility” functionality, a | known before
planned the accident
characteristic of | (or QC would
the product have rejected!)
Consumer sometimes not possible
participation | consumer found | because defect
in risk | “best” risk is latent
reduction avoider
NEGLIGENCE | STRICT
Possible utility | No utility in
might justify | building
allocation of | product
damages to | “more
victim. dangerous
(Due care is | than
central issue: | designed.”
focus on | (Due care not
adequacy of | relevant:
process.) focus on
adequacy of
product.)
Table 1

product, and is expected to use it with care to minimize

the chance of accident. This is a very simplified analysis

but does make the point.

This table may now be used in the evaluation of specific
coding defects to see what standard of liability should be
applied to the coding defects of listed below. We list
several mistakes in implementation of the specification
that we’ve often seen in code examples."" The code given
is meant for example only and follows the style of the C,
C++ or Java. Such mistakes may be seen to be language
style dependent: some languages provide opportunities for
certain sorts of mistakes while preventing others. We
believe that C style languages are prevalent enough in
safety-critical software development that we should
consider them. Therefore, we presently restrict our
attention to these examples.

Consider the examples for the general errors in logic that
they present if they are not immediately discovered and
corrected:

1. x=x+5instead of x =x * 5 (arithmetic)
x <=5 instead of x < 5 (logic)

3. wrong variable name: x =b * 5 instead of
x =c * 5 (arithmetic)

4. x =x + 1 instead of x = 1 (one of the Therac
code defects, may lead to “buffer overflow.”)

5. loop counter variable reset in the incorrect place.

example: while (i<5) {code....1=0; }
instead of:
i=0; while (1<5) {code ... }
(serious problems, easy mistake!)

6. array off by one: declaring an array of length 11
instead of 10 - using a language that starts
counting at 0 for index values. (simple human
assumptions)

7. crossing of arguments when calling a function.

given a function prototype: int func (int i,
int j) the developer may give an integer for i
when it was meant for j and vice versa.
(unpredictable results)

These mistakes look like they should only be found in
first-year programming class projects, yet it is their
simplicity that makes them so easy to overlook (and hard
to find) in large projects. The characteristics of the defect
classification can now be applied to these mistakes to
determine within which class they fall.

Mistake number 1 will be the primary example from
which all other mistakes will follow. The mistake is found
only by comparison to the developer’s own standard.
There really is no social standard for what I can do with
arithmetic. It falls in second column of row 1. When
analyzing the “degree of human intention” in the second
row of the table, it is clear that these defects are not
intentional, they are “mistakes.” Again, it also falls in the
second column of row 2. Can the designers of the

! We believe that these particular kinds of code mistakes
are not always found by testing or inspection, though
some portion of them are likely to be found.

software now alleviate the danger by some sort of
safeguards? Not reliably, since we don’t know the nature
of residual mistakes like this. Once again, it falls in the
second column of row 3. Is this defect the sort of thing we
can observe and analyze, is it “visible?” If it was, quality
control would have it corrected! It is a latent defect and
again, falls in the second column of row 4. Finally, can
the user (the consumer) guard against the danger? The
user can’t read about it in the manual and has no way to
know what precautions to take. It falls in the second
column of row 5. Defect number 1 contains each and
every identifiable characteristic of a legally defined
failure to meet product specifications. This results in the
application of the strict liability standard. The product is
considered “more dangerous than it was designed to be!”
Note that examples 2 — 7 produce precisely the same
results.'” If any defects like these remain in our code and
are found to be a substantial cause of personal injuries to
a user, we are liable. Our “due care” is irrelevant.

6. WHAT CAN WE DO?

First note that there are defenses to a claim of strict
liability. The particular defect must be proven to be a
“substantial” or “proximate” cause of the damages. The
product may have been legally “misused” or modified by
the user so that the cause of the damages is not really the
developer. These issues are important, beyond the scope
of this paper, and well discussed elsewhere [11].

Mere process, by itself, cannot solve this problem.
Liability is assessed when proof is found showing the
defect that caused the accident was a failure to meet the
developers own specification. ISO 9000 or CMM
certification, relevant to a negligence case, has no
relevance here. The only hope to avoid this standard of
liability is to avoid the defects themselves. Full
verification is required to realize this hope. While we can
always commit more resources to this effort and improve,
full verification is not possible for nontrivial software
systems [8]. The goal then, is to lower actual risk if and
when possible. Then, lower the risk of catastrophic
damages when undiscovered defects result in software
failure. Thus, process is important to the extent that it:

* Actually lowers risk of mistakes in implementing
safety specifications; and,

* Produces systems tolerant of mistakes in
implementation of safety specifications.

"2 This is not to say that these defects could never be the
result of intentional design decisions on the part of the
programmer. There are some cases where arguments may
be adduced to show the specification is satisfied by such
code even though the “correct” version would have been
safer. We do not cover these cases in this paper.

The first item calls for developers of safety-critical
software to carefully gather and assess data on the
efficacy of their own processes for reducing the number
of mistakes in the implementation of their safety
specifications. Processes that incorporate testing at every
level of development aid in reducing the number of actual
defects. Mistakes can possibly be found during unit
testing and even during black box or user testing. No
matter how much testing is done, nothing can guarantee
that no defects in code remain [17]. It is best that our
business models include a risk management component
[5]. In this way, contingencies may be planned that will
avoid the possibility of a simple mistake bankrupting the
development organization due to liability costs.

The second item is another important topic with its own
literature, a good overview is given by Leveson in [4].

7 SHORTCOMINGS AND
FUTURE WORK

This work is part of a larger project we have undertaken
at Cal Poly State University. Our overall goal is to
determine the particular requirements of the law of
products liability and design processes that address them
adequately. We have the further goal to at least partially
automate these processes by use of workflow
technologies. We have already done work investigating
the negligence standard for design defects and generated a
basic model for workflow assistance in lowering risks of
liability [18]

In writing this paper we found it particularly difficulty to
account for all the legal arguments and technical
arguments that might be relevant. We did our best to
cover the major arguments and to reference sources to
fuller discussions, well beyond the scope of this paper (or
even a book!)

Our mistake analysis is done in a C like language. We
have not considered other (different) languages such as
Lisp, where things would be different. We plan to extend
our analysis to languages relevant to safety-critical
software and will assess more of them as needed.

8. ACKNOWLEDGEMENT

We gratefully acknowledge the encouragement and
generous support of Mr. Jon Simonds and his wife Olivia
in this work.

REFERENCES

[1] Petroski, To Engineer is Human, Vintage Press, NY,
1992

[2] Turner, Richardson, Software and Strict Products
Liability: Technical Challenges to Legal Notions of

Responsibility, Proceedings of the IASTED International
Conference on Law and Technology, San Francisco, Oct.
2000.

[3] Leveson, Turner, An Investigation of the Therac-25
Accidents, IEEE Computer, Vol. 26 No. 7, July 1993.

[4] Leveson, Safeware, Addison-Wesley, 1995.

[5] Turner, “Risk Management for Safety-Critical
software: A Unique Problem on the Horizon,” published
in The Technology Report, a publication of the
Technology Section of the Adademy of Legal Studies in
Business, 2001. The paper is currently held at:
www.csc.calpoly.edu/~csturner/research.html

[6] Grimshaw V. Frod Motor Co., 174 Cal. Rptr 348 (Cal.
App. 1981).

[7] Bruegge, Dutoit, “Object-Oriented Software
Engineering: Conquering Complex and Changing
Systems.” Prentice Hall, p 517 (2000)

[8] Kaner, “The Impossibility of Complete Testing,”
Software QA, vol. 4, no. 4, p 28 (1997).

[9] Hamlet, “Are we Testing for True Reliability?” /EEE
Software, July 1992.

[10] Turner, “Software as Product: The Technical
Challenges to Social Notions of Responsibility,” Ph.D.
dissertation, Department of Information and Computer
Science, University of California, Irvine, 1999. Available
at www.csc.calpoly.edu/~csturner/research.html

[11] Witherell, How to Avoid Products Liability
Lawsuits and Damages, Noyes Publications, 1985

[12] Prosser, Keeton, Prosser and Keeton on Torts, 5"
Edition (West Publ, St. Paul, MN. 1984).

[13] Restatement Third, Torts: Products Liability,
American Law Institute Publishers, MN, 1998

[14] Hecht, “Products Liability Issues for Firmware in
Consumer Systems,” submitted to Professor F. Olsen,
UCLA School of Law and to Professor C.S. Turner of Cal
Poly State University, unpublished manuscript, 2001.

[15] Prentis v. Yale Mfg. Co., 421 Mich. 670, 365
N.W.2d 179 (Sup. Ct. M1, 1984).

[16] Henderson & Twerski, Closing the American
Products Liability Fontier: The Rejection of Liability
Without Defect, 66 NYU L. Rev. 1263 (1991).

[17] Parnas, Clements, “A Rational Design Process, How
and Why to Fake it,” I[EEE TSE, Vol SE-12, P 251 (1986)

[18] Turner, Khosmood, “Rethinking Software Process:
the Key to Negligence Liability,” Proceedings of the Fifth
IASTED International Conference, Software Engineering
and Applications, August, 2001, Anaheim, CA.

