
4b Conventional
1-elia bility the09
worksfine - i f i ts
assumptions hold.
But for software,
they fail. A new
theory of
trustworthiness is
needed.

I E E E S O F T W A R E

Are We
Testing for
True
Reliability?
DICK HAMLET, Portland State University

S oftware engineers are less
eager to accept reliability modeling than
ensneers in -other disciplines. Instead,
they propose clever methods for develop-
ing “defect-free” programs or for testing
to eliminate all defects. These methods,
although valuable and necessary, are es-
sentially unrelated to reliability.

Reliability is the statistical study of fail-
ures, whch occur because of some defect
in the program. The failure is evident, but
you don’t know what mistake is responsi-
ble or what you can do to make the failure
disappear. Reliabililty models are sup-
posed to tell you what confidence you can
have in the program’s correcmess.

But conventional reliability theory
- which is taken from the reliability
engineering of physical objects - is not
satisfactory. It works only when a simi-
lar set of operational assumptions hold.
I t is not tailored for software’s quirks.
Thus, it rarely provides developers with

I

confidence that they can rely on their
software.

TWO KINDS OF MODELS I1 ,
To understand what a reliability

model demands, you must first under-
stand that there are two kinds. Reluzbzlity-
growth models are applied during de-
bugging. They model repeated testing,
failure, and correction. Managers can
use them to predict when the mean time
to failure is large enough to release the
software.

Reliability models, in contrast, are ap-
plied after debugging, when the program
has been tested, and no failures have been
observed. The reliability model predicts
the M T T F you can expect.

At iirst glance, the reliability model
appears to be just a h t i n g case of the re-
liability-growth model in whch zero fail-
ures are observed. However, these models

07407459/92/0700/0021/$03 00 0 IEEE 2 1

tliffet- qualit;itively. Because reliability-
yrowth inotlels are used during debug-
ying, as you ohserve failures, the observa-
tions give you direct, nonstatistical
feedback on the model's performance:
['he AI'1"lT. you calculate from the model

should he roughly the MTTF you actually
ohsene, which for most of the debugging
period will lie short, say 100 runs. Further-
inore, since the reliability-growth model is
designed to tell simply when the software's
operational quality is a t an acceptable
level, prediction accuracy c m be less than
perfect.

The predictions of a reliability model,
on the other hand, are purely statistical.
Because you do not observe failures, there
is nothlng to check the predicted MTTF
;igainst. Moreover, the M'TTTF is much
larger than any observation data you can
obtain, say 100,000 runs. For safety-criti-
cal software, the required M'ITF may be
orders ogmagnitude higher. For these sys-

tems, the calculated M T T F must be pre-
cise, because it fulfills a contractual obliga-
tion or is related to an inflexible require-
ment like protecting human lives.

Thus, much more is demanded of a
reliability model than a reliability-growth
model. And for that reason, you should be
careful in accepting the results of a reliabil-
ity model at face value. These are the
models I am concerned with in 151s article.
I want to show that if testing has shown
zero failures for enough samples that a
model predicts an acceptable MTTE you
can't always trust that model.

WHY CONVENTIONAL RELIABILITY
THEORY FAILS

Software reliability is usually modeled
by analogy to physical reliability - the
engineering of reliability for objects.
Physical reliability is concerned with col-
lections (often of apparently identical me-

chanical parts), whose members differ
slightly because of random (as opposed to
systematic) fluctuations - such h g s as
manufacturing, operating environment,
and durability. The collection is tested,
and the destruction times of members are
noted; physical reliability theory is con-
cerned with calculating the MTTE

In the software analogy, a single pro-
gram is given different inputs to form the
collection. A failure rate 8 is postulated for
each program P as the probability that P
will fail on an arbitrary input. Inputs are
assumed to be drawn from an operational
profile that may weight some more heavily
than others, reflecting the actual usage ex-
pected of P. Then the statistical theory
relates 8 to the number of tests N con-
ducted without failure. TheMTTFis 118,
as derived in Martin Shooman's text.' If
the theory holds, the calculated MTTF
will predict observed behavior when ir
puts come from the operational profile.

- ~ ~ _ _ _ _ ~ _____ ~ _ _ _ _ _ ~ ~~

TWO DEVELOPMENT MYTHS: DEFECFFREE SOFTWARE AND TESTING AWAY FAILURES
Some developers seek to

avoid testing altogether, claim-
ing that they can develop de-
fect-free software using formal
methods. The argument is that
software fails only because dis-
crete mistakes were made in de-
veloping it. That is, each applica-
tion has a perfect program - a
program that cannot fail. These
developers believe that they can
create defect-fiee software.

Other developers acknowl-
edge that perfect programs can-
not always be created, but they
still hope to remove all defects
through testing.

serious flaws.
Both these approaches have

Defect-freesohwcre.Onthe
surface, the idea of defect-kee
software seems logical; there is
no physical medium in software,
as there is in other types of devel-
opment, to wear out, become

&wed during man&cturing,
and so on. Of course, the mm-
puter executing a program is a
pkys~cal object, and a p h p d otseeorun- n-iatn
mediumtmmnitstheprogram d
~ b u t t h e s e ~ a r e a i v i a l +
sources of Eulure co

fadhrseveralreasons: em solutions will al-

who in turn imperfectly com-
municate the solution's dzarac-
teristics.

~
~

J U L Y 1 9 9 2 2 2

The chance that a single test will fail is
8, or 1 - 8 that it will succeed. Thus the
probability that N independent tests will
all succeed is (1 - 8)”‘. The largest value of
8 such that (l-8Yv > a defines the 1 - a
upper confidence bound on 8 - that is,
the probability that thls value exceeds the
correct value for P.

Solving for 8, testing with N indepen-
dent points from the operational profile
gives 1 - a confidence + a t the failure rate
is below 8, if 8 = 1 -a”’. For example, one
million test points gives 99 percent confi-
dence that the failure rate is below 4.6 x
lo4, an MTTF of about 220,000 runs.

Unfortunately, this conventional reli-
ability theory is flawed in a number of
ways.

Random variables diier. Some software,
like a telephone switch, is intended to op-
erate continually, so starting it and waiting
for failure is analogous to starting a de-

not guarantee reliability, which
must be independently as-
sessed at the end of any
human activity, to catch inevi-
table mistakes.

Tes%lpMmyfdwes.m,
on the surface, testing away all
defects seems possible. Each
program’s code is finite and
hence must have only a bed,
finite number of defects. But
even clever testing methods are
doomed to fail.

Practical systematic testing
is a game of coverage. The tes-
ter tries to make sure that all
the elements of the program or
specification have been tried. In
parrition testing, you divide, or
partition, the input space into
classes that characterize the ele-
ments to be covered and create
test sets by selecting points
from each class.

The hope is that the input

structive test of a physical object. The ran-
dom variable is execution time, so you can
form a collection of objects using a single
program by giving it different inputs,
weighted according to its operational pro-
file.

However, most programs operate ei-
ther in a batch mode, in which they are
given input then compute and terminate,
or in an interactive mode, in which they
may be in operation for a long time but
spend most of it awaiting human input.

For batch and interactive programs,
run count replaces time as the random
variable. That is, the M T F is measured
in executions, or number oftests tried. For
a batch program, a run is a complete exe-
cution; for an interactive program, it is a
single VO interchange.

Proyam MIS aren’t always independent. To
satisfy the analogy to mechanical parts,
program runs must be independent of one

another. Otherwise, in the mechanica
analogy, the parts being tested would in-
fluence one another (the failure of om
would depend on the others), fundamen-
tally contravening the statistical theov.

U h n programs accumulate state in-
fonnation over their runs, they are explic-
itly compromising run independence. Foi
example, an interactive program can, as :
side-effect of responding to an ill-formec
comnyand, go into a state in which mos
subsequent commands fail. Those subse-
quent runs are statistically meaningless
Dave Pamas cleverly notes that it woulc
be a good idea for safety-critical program:
to reinitialize themselves whenever possi-
ble to improve the accuracy of reliabilit]
theory by avoiding state build-up.’

Physical systems fail because defect:
appear during their use. Design defect:
are not unknown in established fields suck
as civil engineering. For example, in thc
walkway collapse at the Kansas Cic

classes will be homoFneous-
any point selecwd &om each
classwillbe representative-and
that cleverly defined classes
will uncover all failures. Parti-
tioning may be based on pro-
gram s t r u m , as in clear-box
methods (named for electronic
components in boxes that
allow the interior to be exam-
ined), or on the specification,
as in black-box methods,
which do not use the code.

In structural testing, pro-
gram elements are exercised.
Certainly if some part has not
been tried at all, you can have
no confidence in its quaky.
The best known structural test
method is statement testing, in
which tests force the execution
of each statement. Statement
testing is part of a control-flow
hierarchy of methods, includ-
ing branch testmg (tests must
force each branch to be taken

both ways), a variety of
datatlow methods (tests must
cover paths defined by certain
delinitionhe relationships
among variables), and full-path
testing (tests must force execu-
tion of all paths). Path testing
has manyvariants, in which
loops need not be executed for
each of the infinite ways gener-
ally possible. These variants are
usuallyviewed as the most strin-
gent of the practical structural
methods.

All the finite, path-based,
struaural methods are straight-
forward and relatively inexpen-
sive to implement, and a variety
of research and commercial tools
have been aea td for them.

methods, mutation testing is
probably the least known struc-
turd method. Small individual
changes are introduced in the
program under test (the most

In contrast to control-flow

interesting ones occur in ex-
pressions), and test sets must
distinguish the mutant pro-
gram from the original. Muta-
tion testing is often surprisingly
difficult because it is hard to
think through the extensive
bookkeeping required.

The only implementation
of mutation testing is the brute-
hrce creation and execution of
a vast collection of mutants,
which is expensive and slow.
So-called “weak mutation” -
in whichthe mutation’s effect is
detected in the state immedi-
ately following - is better in
this regard, but still not ac-
cepted.

In black-box testing, the
specification supplies the organ-
izing information for system-
atic testing. What is often
called functional testing isolates
a collection of actions (func-
tions) a program should per-

I E E E S O F T W A R E 2:

Hyan-Regenc!. hotel, construction could
not handle thc weight of a crowd, and the
structure simply waited for its first crowd,
then collapsed. However, reliability the-
ory is not applied to such mechanical situ-
ations - the objects are one-of-a-kmd.
Only coniputcr programs have the wealth
of design defects that might support a sta-
tistical approach.

For a statistical theory, variations must
be independent. \$%en one test system
fails, it must not imply anyhng about the
failure of others. Programs fail only be-
cause of desig defects lying in wait for the
input that excites them. Test systems differ
only in the input each is given. Hence,
these inputs must not be correlated. That
is, the failure or success of one input can-
not force the same behavior for another.
Correlated inputs are analogous to cheat-
ing on the testing effort by copying one
data point several times. If that point is a
failure, the reliability will appear worse

than it really is; if not, the reliability will
appear to be better. In program-release
testing, the result is always overly optimis-
tic. Because a release test by d e h t i o n
does not fail, if it contains correlated
points, the calculated reliability is too
hgh.

There may be no opemtkrml profile. For a
telephone switch, you can determine the
operational profile empirically from past
data, or model the load analpcally and
derive data from the model. Such a distri-
bution is accurate and appropriate. How-
ever, most programs’ profiles are not
known. What is more in doubt is the valid-
ity of any operational profile for a piece of
system software. The software may handle
an immense number of possibilities,
whose frequency and sequence depend on
human vagaries. Each execution is more a
unique special case than a sample drawn
from some distribution. Again, an inap-

propriate distribution can only worl
against calculated reliability, becausc
nothing is gained by testing in region
weighted too heavily, but improperly ne
glected regions give a false security tha
the software does not in fact support. Thu
conventional theory will give overly opti
mistic results.

There is no appropriate failure rate. A com
mon assumption in software developmen
is that the instantaneous rate of Edilure -
the hazard rate - is constant. For pro
grams that are more hkely to fail the longe
they run, a model might use a time- o
run-increasing hazard rate, as in mechani
cal systems that wear out. (The analog
would be not that the program wears OUI

but that it accumulates state that increase
its &elhood of improper behavior.) Sucl
a model, however extreme for software
gives nearly the same results as for a con
stant hazard.

form, and requires test data to
exercise each function. You can
further r e h e the test sets by in-
cluding parameters that modify
functional behavior, or by re-
quiring that sequences of func-
tions be tested.

Functional testing directly
tries what is expected of the
sohare. You can plan tests as
soon as you have the Specifica-
tion, which is a plus. Functional
testing also protects developers
against the embarrassment of a
p r o p that doesn’t work at
all because of an oversight or
misunderstanding about some
feature.

W h y p t # b f I t & ~ k d q
Partition testing has great intu-
itive appeal, but it is not a pana-
cea. As an absolute method, it is
flawed because partition tests
can be misleading. For most
programs and most testing
methods, an infinite number of

greater than three, in which
one row has elements in stricdy

be
ev

~
~

24 J U L Y 1 9 9 ;

Furthermore, a growing hazard rate
does not really capture failure arising from
state accumulation. First, state is not al-
ways harmful - it can be used to catch and
even correct program problems, and a sin-
gle program can alternately e h b i t bene-
ficial and harmful aspects of state accumu-
lation as it runs. Second, tlnkeringwith the
hazard rate does not address the issues of
sample independence, nor does it alter the
qualitative result that reliability does not
depend on program s ix .

Defects per fine should be r q U y constant.
Conventional theory fails to explain a pri-
mary observation about software systems:
the M’ITF (in runs) in large systems is
roughly inversely proportional to pro-
gram size. That is, the number of defects
per h e is roughly constant. Thls software
“law,” whch is observed in practice, is
plausible when defects are human mis-
takes that arise because of the complexity

best-known inclusion relation
among methods, branch testing
strictly subsumes statement
testing. Intuitively, when
methodlsubsumes2,thereis
no point in using 2, because
method 1 is always at least as

Misleading test sets flaw
this inclusion relation, how-
ever. The “better” method’s
test set a n always be mislead-
ing, while the “worse”
method’s (different) test set is
not. Furthermore, these test
sets can be natural for the
methods, so the worse
method’s test set may actually
be the right choice for practi-
cal testing. To illustrate, con-
sider the Pascal procedure:

function misled(x real): real;

be betta.

begin
misled := q
if x > 0 then

misled := 1 .O/sqr(x)

Suppose you are trying to
end

of large programs. But conventional the-
ory predicts that the M’ITF does not de-
pend on program size.

TOWARD TRUE RELIABILITY

Conventional reliability is deficient in
two significant ways: It relies on an opera-
tional distribution that may not exist, and
its assumptions about sample indepen-
dence do not hold. To correct these defi-
ciencies and find a better theory, we must
probe the correct sample space and exam-
ine the chance of program failure under
arbitrary circumstances. Unless we can
find a true reliability theory - a theory of
what Parnas calls trustwordmess, unlikely
to fail catastrophcallJ - developers are
buildmg on sand. When they make gener-
alizations like “random system testing
should replace unit partition testing,” or
“inspections are better than testing,” they
may be setting themselves up for disaster.

Sampling basis. For any reliability theory
you must have a proper sampling basis tc
infer the probability of failure. Progran
input is not an appropriate samplini
choice because the statistical procedure!
work only when samples directly probt
the sources of failure. For programs, ran-
dom testing over the input space is onlj
tenuously connected to the design flaw:
that reside in the code. Input-space sani-
p h g also fails to predict the direct rela.
tionship between defects and progran
size because program charaaeristics arc
invisible.

The programming analogy to m e
chanical reliability would be better if thc
sample space were closer to the source o
defects, the program text. If inspection
were perfect at detecting failure, it woulc
make more sense to inspect a sample o
code, and infer the quality of uninspectec
code, than to sample executions and infe
the quality on unexecuted inputs. Inspec

compute the reciprocal of the greater the danger of aivializ-

hence the more likely that it

ethod reliable (not in the sta-
sense of the word) for a

program if there are no mis-
leading test sets for that pro-
gram &at satisfy the method.1

dom reliable, and reliability is
root Unfortunately, methods are sel-

Duran and Simeon Ntafos,
bund that random testing and
partition testing are more sim-
llar than you mght think3

For that reason, you can ex-
pres an estimate of the @ty
that c a n b e d i n t o software
withpartitiontestingasan
MTTX Atypical unit partition
testmightcontain 1OOpoints.If
all succeed, and you assume the
test is random, there is 80 per-
cent d d e n c e in an= of
about 62 executions. This very
modestestimatehardly~es
the usual claim that software has
been tested and works.

REFERENCES
1 W Howden, “Rehabihty of the

Path-Analysis Tesang Smtegy,”
lEEE TYGW &$ware Eng , Sept.

2. R Hamlet, “Rehab~lity Theory of
1976, pp. 208-215.

Program Tesang,” Acta Infirmunu,
1 9 8 1 , ~ ~ . 31-43.

3. D. Hamlet and R. Taylor, “Pam-
non Tesang Does Not Inspire Con-
fidem,”IEEE Tram S@ium
Eng , Dec. 1990, pp. 1402-1411.

I E E E S O F T W A R E 25

rions are h;irtl to quantify and control,
however, SCI a different kind of testing is
needed. one that samples the space of ac-
rual defects.

Sampling the state space. Both Pamas and
1 have proposed using the program’s state
space as the sampling domain for trust-
worthiness,’,” hut this i s not a good practi-
cal approach. The argument for using it is
that failure results from textual flaws, or
taults, when paiticular circumstances arise
at the control point that contains the fault
-which describes the state space exactly.
I t is a tuple of intemal-variable values and
a value of the location counter. The sam-
pling distrihution should be uniform be-
cause failure is no more likely for one state
location than another. Such a theory cor-
rectly predicts that failure probability is
proportional to program

good approximation. Thus, I assume that
a computation’s data states contain only
variable values on whch the result de-
pends. Each computation starts with an
input, and may have an initial “correct”
state subsequence, then the first bad spate
occurs, followed by a “failed” portion of
the sequence. Thus, sampling the input
space doesn’t work. Inputs that are appar-
ently independent can lead to the same
state and thus are not independent sam-
ples, relative to failure in that state.

Data fan-in/-ovt. The crux of appropri-
ate state-space sampling is the idea of state
collapse - when different computations
contain common sequences ofstates. State
collapse can occur through fan-in -when
two paths in a program join or when the
values taken on by intemal variables are

restricted.’ An example is
size.’

U n fo r t ii n a t e 1 y , t h e
state space of most pro-
grains is far larger than the
input domain, so a theory
that requires sampling
thls much space is not at-
tractive.

Larry Morel1 and Jeff
L70as suggest an altema-
tive? T h e y argue that
points of the state space
are themselves correlated.

-
Capturing the

development process
lets us expose likely

sources of defects and
test for them with

appropriate
partitions.

Starting with an input,
each program normally goes through a se-
quence of states (its Computation) to reach
an output. The computation steps are de-
fined by the operational semantics of the
program statements as mappings from
state to state.

Hence, when some input leads to pro-
gram failure, the entire computation has
“failed,” so sampling states from that se-
quence overemphasizes failure. States
from a single correct sequence are corre-
lated in a sinlilar way. To add to the confu-
sion, the same state may appear in both
failed and correct computations.

You don’t have to sample variable val-
ues in a state if the final result does not
depend on them. Although the problem to
determine such dependencies is generally
unsolvable, dataflow techniques give a

an assignment statement
with a constant right side.
This statement produces
a kind of ultimate fan-in
because after its execu-
tion, theassignedvariable
has lost whatever range of
values it might have had;
it now can have only a
single value.

Fan-out occurs when
the possible values in
states expand. For exam-
ple, an input statement is

the ultimate fan-out: whatever restricted
values the input variable might have had
before the statement, after it, any value is
possible.

Many program statements do not fan
in or out. For example, an assignment
statement using an arithmetic operator
like + has as many state value possibilities
after execution as it did before.

When programs have a good deal of
fan-in, their possible data states collapse to
a set that can be smaller than the input
domain. Many inputs lead to exactly the
same computation, and intuitively it is the
computations that should be sampled in
testing. When programs have a good deal
of fan-out, there is a combinatorial explo-
sion of the state space because coverage of
early states does not imply coverage of

_ _ _ _ _ ~ ~ ~ ~~~ ~. ~ ~ ~~~~~

later states with a wider value range.
When programs neither fan out or in,
each input leads to a different computa-
tion, and appropriate state-space sampling
is the same as input sampling. However,
the appropriate distribution is uniform,
not the operational profile.

Thus, in some cases, far fewer test
points are needed to establish trustworthi-
ness than are needed to satisfy conven-
tional reliability. In other cases, the two
require about the same number of points,
but with different test distributions; And
in still other cases, trustworthmess can re-
quire vastly more points than reliability,
with the full exploration of each state as an
upper bound.

Interestingly, computation diversity
and fan-out occur when programs read
input throughout a computation rather
than just at the beginning. Intuitively, such
programs are interactive, and make essen-
tial use of saved state. The ultimate patho-
logical case is that of real-time programs,
in whch inputs and state expansion appear
at any point in the computation because an
interrupt occurs.

HOW SHOULD WE TEST?

Although testing certainly has its limi-
tations, it is unwise to discard it as a useful
part of software development. The devel-
opment process is beginning to be studied
and controlled. Capturing the process
provides the opportunity to expose likely
sources of defects, and to test for them
with appropriate partitions. Conventional
random testing also has its merits.

P~tition testing. The box on pp. 22-25
describes the weaknesses of partition test-
ing to dispel the idea that a successful test
means the software is reliable. But I would
never recommend that you abandon par-
tition testing altogether - and particu-
larly not in favor of system-reliability test-
ing.

Partition testing is the developer’s best
tool to probe the software for specific de-
fects. Of particular importance are defects
that lead to failures with catastrophic con-
sequences. However infrequent a cata-
strophic failure may be, it is worth expend-

26 JULY 1 9 9 2

ing effort to preclude it, and a partition
devised by considering the failure possibil-
ities (for example, using a safety fault tree6)
is just the way to attack the problem. In-
deed, you should use partition testing
whenever you suspect a particular source
of defects, with a partition emphasizing
the defect-prone input. Testing in that
partition gives little confidence in overall
reliability, but it is the only means of gain-
ing confidence that the Particular problem
will not arise.

For example, a module that undergoes
a specification change late in develop-
ment, or one that fads an inspection, is an
obvious potential defect source. Not only
should you heavily exercise its structural
and functional unit-test partitions, but
when it is integrated into a system, the
whole should be tested with a partition
that singles out module execution.

Partition testing has many advantages.
A functional partition test can be designed
beginning in the requirements stage of de-
velopment. Test data for structural parti-
tions can be automatically generated, and
even if hand generated, the tester has a
systematic goal and automatic support.

If you have a complex piece of software,
whose usage patterns you do not know,
and you have a vast nonnumeric input do-
main, partition testing is probably your
only choice.

Random testing. Preliminary results
(based on a somewhat doubtful model that
uses failures “tagged” by their origin’) in-
dicate that uniform-distribution, state-
space testing should be much better than
partition testing at establishing confidence
in apparently defect-free software.

However, random testing is not practi-
cal because it requires many orders of
magnitude more test points than current
practice. Even if you have an oracle -
some means of mechanically deciding if
program results are correct - random
testing is barely feasible. Without an ora-
cle, it is not feasible at all in most cases.

But random testing is the theoretical
model that can answer fundamental ques-
tions that have too long been ignored. If,
in fact, testing for a reasonable reliability is
impractical by any means, then testing is

nerely a defect-detection method that
nay not stack up well agamst others like
nspections, and we should be changing
3ur quality-assurance methods accord-
ngly. On the other hand, if we can find a
;mall state space to sample, we can make
wen trustworthiness practical.

Measuring the state-space coverage a
:est giyes is not impractical. Well-known
program-instrumentation techques can
record test penetration and statisticallyan-
dyze the results. If the state-space theory
is correct, such measurements can pin-
point states that have been poorly tested,
and leave the difficult problem of how to
reach them to the tester.

Voas has given the problem a novel
twist with practical promise. He directly
probes the state space by perturbing a
state, then monitoring whether the per-
turbation affects program results. If not,
that state (or the corresponding statement
of the program) is not very “sensitive,”
since even if the data state were incorrect
(as arranged by the perturbation) the re-
sults are correct. The lesson for program-
mers is that faults in insensitive statements
will be hard to detect by testing. Perhaps
the cleverest part of Voas’s idea is that he
need not consider the input space, so he
doesn’t have to reach the data states he
perturbs or consider the operational pro-
file.

e main points I have tried to make in F; this article are
+ In testing for true reliability, clever

partition methods may be no better than
random testing, and if they are not, then
no practical testing technique exists for
guaranteeing software quality.

+ The analogy to mechanical reliabil-
ity is a poor one for software.

+ More research is needed on trust-
worthiness; it may be that the state explo-
sion is not so important as it seem. Corre-
lated states are grouped into program
computations, which may be the appro-
priate entities to sample.

+ It may be possible to statically char-
acterize programs for which the combina-
torics of testing is not forbidding, giving
precision to the desirable quality of “test-
ability.” Testability is also dynamically de-

I1

I E E E S O F T W A R E

scribed by Voas’s idea of sensitivity. EX
periments are needed to determine i
these theoretically appealing ideas are ir
fact related to testing difficulty.

If testing for quality is the goal, then wi
must find a solution to the oracle problem
Until random tests of a million points be
come practical, testing is only a poor com
petitor for other heuristic defect-detec
tion methods. I

ACKNOWLEDGMENTS
This work was supported by National Science

Foundationgrant CCR-9110111.

REFERENCES
1. M. Shooman, Sofrware Enginem’ng Design, Re-

liability, and Managmat, McGraw-Hill, New
York, 1983.

2. D. Pamas, A van Schouwen, and S. Kwan,
“Evaluation of Safety-Critical Software,”
Co” . ACM, Sept. 1990, pp. 638-648.

3 . R. Hamlet, “Probable Correcmess Theory,”
Infbnnatim Pmcessing Leften, June 1987, pp.
17-25.

4. L. Morel1 and J. Voas, “Inadequacies of Date
State Space Sampling as a Measure of Tiust-
worthiness,” Software Eng. Notes, Apr. 1991,
pp. 73-74.

5. J. Voas, “Preliminary Observations on Pro-
gram Testability,” Pmc. Pa+ Nortbwert Qual-
icy CmJ, PNQC, Portland, 1991, pp. 235-247.

ware Safety,” lEEE Trans. SOfNre Eng., Sept.
1983, pp. 569-579.

7. D. Hamlet and R. Taylor, “Partition Testing
Does Not Inspire Cunfidence,” IEEE Fans.
SofrwareEng., Dec. 1990,pp. 1402-1411.

6. N. Leveson and P. Harvey, “Analping Soft-

Dick Hamlet is a professor
of computer saence at Port-
land State University,
where he is invesrigadng
the theoretical foundations
of testing. He is the author
of two textbooks and about
40 refereed conference and
journal articles.

Hamlet received a PhD
in computer science from the University ofwashingon.

Address questions about this a r d e to Hamlet at
Portland Sate University, CS Dept, Center for Software
Quality Research, Po Box 75 1, Portland, OR 97207;
Internet hamlet@cs.pdx.edu.

2 7

mailto:hamlet@cs.pdx.edu

