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S oftware engineers are less 
eager to accept reliability modeling than 
ensneers in -other disciplines. Instead, 
they propose clever methods for develop- 
ing “defect-free” programs or for testing 
to eliminate all defects. These methods, 
although valuable and necessary, are es- 
sentially unrelated to reliability. 

Reliability is the statistical study of fail- 
ures, whch occur because of some defect 
in the program. The failure is evident, but 
you don’t know what mistake is responsi- 
ble or what you can do to make the failure 
disappear. Reliabililty models are sup- 
posed to tell you what confidence you can 
have in the program’s correcmess. 

But conventional reliability theory 
- which is taken from the reliability 
engineering of physical objects - is not 
satisfactory. It works only when a simi- 
lar set of operational assumptions hold. 
I t  is not tailored for software’s quirks. 
Thus, it rarely provides developers with 

I 

confidence that they can rely on their 
software. 

TWO KINDS OF MODELS I1 , 
To understand what a reliability 

model demands, you must first under- 
stand that there are two kinds. Reluzbzlity- 
growth models are applied during de- 
bugging. They model repeated testing, 
failure, and correction. Managers can 
use them to predict when the mean time 
to failure is large enough to release the 
software. 

Reliability models, in contrast, are ap- 
plied after debugging, when the program 
has been tested, and no failures have been 
observed. The reliability model predicts 
the M T T F  you can expect. 

At iirst glance, the reliability model 
appears to be just a h t i n g  case of the re- 
liability-growth model in whch zero fail- 
ures are observed. However, these models 
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tliffet- qualit;itively. Because reliability- 
yrowth inotlels are used during debug- 
ying, as you ohserve failures, the observa- 
tions give you direct, nonstatistical 
feedback on the model's performance: 
['he AI'1"lT. you calculate from the model 

should he roughly the MTTF you actually 
ohsene, which for most of the debugging 
period will lie short, say 100 runs. Further- 
inore, since the reliability-growth model is 
designed to tell simply when the software's 
operational quality is a t  an acceptable 
level, prediction accuracy c m  be less than 
perfect. 

The predictions of a reliability model, 
on the other hand, are purely statistical. 
Because you do not observe failures, there 
is nothlng to check the predicted MTTF 
;igainst. Moreover, the M'TTTF is much 
larger than any observation data you can 
obtain, say 100,000 runs. For safety-criti- 
cal software, the required M'ITF may be 
orders ogmagnitude higher. For these sys- 

tems, the calculated M T T F  must be pre- 
cise, because it fulfills a contractual obliga- 
tion or is related to an inflexible require- 
ment like protecting human lives. 

Thus, much more is demanded of a 
reliability model than a reliability-growth 
model. And for that reason, you should be 
careful in accepting the results of a reliabil- 
ity model at face value. These are the 
models I am concerned with in 151s article. 
I want to show that if testing has shown 
zero failures for enough samples that a 
model predicts an acceptable MTTE you 
can't always trust that model. 

WHY CONVENTIONAL RELIABILITY 
THEORY FAILS 

Software reliability is usually modeled 
by analogy to physical reliability - the 
engineering of reliability for objects. 
Physical reliability is concerned with col- 
lections (often of apparently identical me- 

chanical parts), whose members differ 
slightly because of random (as opposed to 
systematic) fluctuations - such h g s  as 
manufacturing, operating environment, 
and durability. The collection is tested, 
and the destruction times of members are 
noted; physical reliability theory is con- 
cerned with calculating the MTTE 

In the software analogy, a single pro- 
gram is given different inputs to form the 
collection. A failure rate 8 is postulated for 
each program P as the probability that P 
will fail on an arbitrary input. Inputs are 
assumed to be drawn from an operational 
profile that may weight some more heavily 
than others, reflecting the actual usage ex- 
pected of P. Then the statistical theory 
relates 8 to the number of tests N con- 
ducted without failure. TheMTTFis  118, 
as derived in Martin Shooman's text.' If 
the theory holds, the calculated MTTF 
will predict observed behavior when ir 
puts come from the operational profile. 

- ~ ~ _ _ _ _ ~  _____ ~ _ _ _ _ _  ~ ~~ 

TWO DEVELOPMENT MYTHS: DEFECFFREE SOFTWARE AND TESTING AWAY FAILURES 
Some developers seek to 

avoid testing altogether, claim- 
ing that they can develop de- 
fect-free software using formal 
methods. The argument is that 
software fails only because dis- 
crete mistakes were made in de- 
veloping it. That is, each applica- 
tion has a perfect program - a 
program that cannot fail. These 
developers believe that they can 
create defect-fiee software. 

Other developers acknowl- 
edge that perfect programs can- 
not always be created, but they 
still hope to remove all defects 
through testing. 

serious flaws. 
Both these approaches have 

Defect-freesohwcre.Onthe 
surface, the idea of defect-kee 
software seems logical; there is 
no physical medium in software, 
as there is in other types of devel- 
opment, to wear out, become 

&wed during man&cturing, 
and so on. Of course, the mm- 
puter executing a program is a 
pkys~cal object, and a p h p d  otseeorun- n-iatn 
mediumtmmnitstheprogram d 
~ b u t t h e s e ~ a r e a i v i a l  + 
sources of Eulure co 

fadhrseveralreasons: em solutions will al- 

who in turn imperfectly com- 
municate the solution's dzarac- 
teristics. 

~ 
~ 
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The chance that a single test will fail is 
8, or 1 - 8 that it will succeed. Thus the 
probability that N independent tests will 
all succeed is (1 - 8)”‘. The largest value of 
8 such that (l-8Yv > a defines the 1 - a 
upper confidence bound on 8 - that is, 
the probability that thls value exceeds the 
correct value for P. 

Solving for 8, testing with N indepen- 
dent points from the operational profile 
gives 1 - a confidence + a t  the failure rate 
is below 8, if 8 = 1 -a”’. For example, one 
million test points gives 99 percent confi- 
dence that the failure rate is below 4.6 x 
lo4, an MTTF of about 220,000 runs. 

Unfortunately, this conventional reli- 
ability theory is flawed in a number of 
ways. 

Random variables diier. Some software, 
like a telephone switch, is intended to op- 
erate continually, so starting it and waiting 
for failure is analogous to starting a de- 

not guarantee reliability, which 
must be independently as- 
sessed at the end of any 
human activity, to catch inevi- 
table mistakes. 

Tes%lpMmyfdwes.m, 
on the surface, testing away all 
defects seems possible. Each 
program’s code is finite and 
hence must have only a bed,  
finite number of defects. But 
even clever testing methods are 
doomed to fail. 

Practical systematic testing 
is a game of coverage. The tes- 
ter tries to make sure that all 
the elements of the program or 
specification have been tried. In 
parrition testing, you divide, or 
partition, the input space into 
classes that characterize the ele- 
ments to be covered and create 
test sets by selecting points 
from each class. 

The hope is that the input 

structive test of a physical object. The ran- 
dom variable is execution time, so you can 
form a collection of objects using a single 
program by giving it different inputs, 
weighted according to its operational pro- 
file. 

However, most programs operate ei- 
ther in a batch mode, in which they are 
given input then compute and terminate, 
or in an interactive mode, in which they 
may be in operation for a long time but 
spend most of it awaiting human input. 

For batch and interactive programs, 
run count replaces time as the random 
variable. That is, the M T F  is measured 
in executions, or number oftests tried. For 
a batch program, a run is a complete exe- 
cution; for an interactive program, it is a 
single VO interchange. 

Proyam MIS aren’t always independent. To 
satisfy the analogy to mechanical parts, 
program runs must be independent of one 

another. Otherwise, in the mechanica 
analogy, the parts being tested would in- 
fluence one another (the failure of om 
would depend on the others), fundamen- 
tally contravening the statistical theov. 

U h n  programs accumulate state in- 
fonnation over their runs, they are explic- 
itly compromising run independence. Foi 
example, an interactive program can, as : 
side-effect of responding to an ill-formec 
comnyand, go into a state in which mos 
subsequent commands fail. Those subse- 
quent runs are statistically meaningless 
Dave Pamas cleverly notes that it woulc 
be a good idea for safety-critical program: 
to reinitialize themselves whenever possi- 
ble to improve the accuracy of reliabilit] 
theory by avoiding state build-up.’ 

Physical systems fail because defect: 
appear during their use. Design defect: 
are not unknown in established fields suck 
as civil engineering. For example, in thc 
walkway collapse at  the Kansas Cic 

classes will be homoFneous- 
any point selecwd &om each 
classwillbe representative-and 
that cleverly defined classes 
will uncover all failures. Parti- 
tioning may be based on pro- 
gram s t r u m ,  as in clear-box 
methods (named for electronic 
components in boxes that 
allow the interior to be exam- 
ined), or on the specification, 
as in black-box methods, 
which do not use the code. 

In structural testing, pro- 
gram elements are exercised. 
Certainly if some part has not 
been tried at all, you can have 
no confidence in its quaky. 
The best known structural test 
method is statement testing, in 
which tests force the execution 
of each statement. Statement 
testing is part of a control-flow 
hierarchy of methods, includ- 
ing branch testmg (tests must 
force each branch to be taken 

both ways), a variety of 
datatlow methods (tests must 
cover paths defined by certain 
delinitionhe relationships 
among variables), and full-path 
testing (tests must force execu- 
tion of all paths). Path testing 
has manyvariants, in which 
loops need not be executed for 
each of the infinite ways gener- 
ally possible. These variants are 
usuallyviewed as the most strin- 
gent of the practical structural 
methods. 

All the finite, path-based, 
struaural methods are straight- 
forward and relatively inexpen- 
sive to implement, and a variety 
of research and commercial tools 
have been aea td  for them. 

methods, mutation testing is 
probably the least known struc- 
turd method. Small individual 
changes are introduced in the 
program under test (the most 

In contrast to control-flow 

interesting ones occur in ex- 
pressions), and test sets must 
distinguish the mutant pro- 
gram from the original. Muta- 
tion testing is often surprisingly 
difficult because it is hard to 
think through the extensive 
bookkeeping required. 

The only implementation 
of mutation testing is the brute- 
hrce creation and execution of 
a vast collection of mutants, 
which is expensive and slow. 
So-called “weak mutation” - 
in whichthe mutation’s effect is 
detected in the state immedi- 
ately following - is better in 
this regard, but still not ac- 
cepted. 

In black-box testing, the 
specification supplies the organ- 
izing information for system- 
atic testing. What is often 
called functional testing isolates 
a collection of actions (func- 
tions) a program should per- 
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Hyan-Regenc!. hotel, construction could 
not handle thc weight of a crowd, and the 
structure simply waited for its first crowd, 
then collapsed. However, reliability the- 
ory is not applied to such mechanical situ- 
ations - the objects are one-of-a-kmd. 
Only coniputcr programs have the wealth 
of design defects that might support a sta- 
tistical approach. 

For a statistical theory, variations must 
be independent. \$%en one test system 
fails, it must not imply anyhng  about the 
failure of others. Programs fail only be- 
cause of desig defects lying in wait for the 
input that excites them. Test systems differ 
only in the input each is given. Hence, 
these inputs must not be correlated. That 
is, the failure or success of one input can- 
not force the same behavior for another. 
Correlated inputs are analogous to cheat- 
ing on the testing effort by copying one 
data point several times. If that point is a 
failure, the reliability will appear worse 

than it really is; if not, the reliability will 
appear to be better. In program-release 
testing, the result is always overly optimis- 
tic. Because a release test by d e h t i o n  
does not fail, if it contains correlated 
points, the calculated reliability is too 
hgh. 

There may be no opemtkrml profile. For a 
telephone switch, you can determine the 
operational profile empirically from past 
data, or model the load analpcally and 
derive data from the model. Such a distri- 
bution is accurate and appropriate. How- 
ever, most programs’ profiles are not 
known. What is more in doubt is the valid- 
ity of any operational profile for a piece of 
system software. The software may handle 
an immense number of possibilities, 
whose frequency and sequence depend on 
human vagaries. Each execution is more a 
unique special case than a sample drawn 
from some distribution. Again, an inap- 

propriate distribution can only worl 
against calculated reliability, becausc 
nothing is gained by testing in region 
weighted too heavily, but improperly ne 
glected regions give a false security tha 
the software does not in fact support. Thu 
conventional theory will give overly opti 
mistic results. 

There is no appropriate failure rate. A com 
mon assumption in software developmen 
is that the instantaneous rate of Edilure - 
the hazard rate - is constant. For pro 
grams that are more hkely to fail the longe 
they run, a model might use a time- o 
run-increasing hazard rate, as in mechani 
cal systems that wear out. (The analog 
would be not that the program wears OUI 

but that it accumulates state that increase 
its &elhood of improper behavior.) Sucl 
a model, however extreme for software 
gives nearly the same results as for a con 
stant hazard. 

form, and requires test data to 
exercise each function. You can 
further r e h e  the test sets by in- 
cluding parameters that modify 
functional behavior, or by re- 
quiring that sequences of func- 
tions be tested. 

Functional testing directly 
tries what is expected of the 
sohare. You can plan tests as 
soon as you have the Specifica- 
tion, which is a plus. Functional 
testing also protects developers 
against the embarrassment of a 
p r o p  that doesn’t work at 
all because of an oversight or 
misunderstanding about some 
feature. 

W h y p t # b f I t & ~ k d q  
Partition testing has great intu- 
itive appeal, but it is not a pana- 
cea. As an absolute method, it is 
flawed because partition tests 
can be misleading. For most 
programs and most testing 
methods, an infinite number of 

greater than three, in which 
one row has elements in stricdy 

be 
ev 

~ 
~ 
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Furthermore, a growing hazard rate 
does not really capture failure arising from 
state accumulation. First, state is not al- 
ways harmful - it can be used to catch and 
even correct program problems, and a sin- 
gle program can alternately e h b i t  bene- 
ficial and harmful aspects of state accumu- 
lation as it runs. Second, tlnkeringwith the 
hazard rate does not address the issues of 
sample independence, nor does it alter the 
qualitative result that reliability does not 
depend on program s ix .  

Defects per fine should be r q U y  constant. 
Conventional theory fails to explain a pri- 
mary observation about software systems: 
the M’ITF (in runs) in large systems is 
roughly inversely proportional to pro- 
gram size. That is, the number of defects 
per h e  is roughly constant. Thls software 
“law,” whch is observed in practice, is 
plausible when defects are human mis-  
takes that arise because of the complexity 

best-known inclusion relation 
among methods, branch testing 
strictly subsumes statement 
testing. Intuitively, when 
methodlsubsumes2,thereis 
no point in using 2, because 
method 1 is always at least as 

Misleading test sets flaw 
this inclusion relation, how- 
ever. The “better” method’s 
test set a n  always be mislead- 
ing, while the “worse” 
method’s (different) test set is 
not. Furthermore, these test 
sets can be natural for the 
methods, so the worse 
method’s test set may actually 
be the right choice for practi- 
cal testing. To illustrate, con- 
sider the Pascal procedure: 

function misled(x real): real; 

be betta. 

begin 
misled := q 
if x > 0 then 

misled := 1 .O/sqr(x) 

Suppose you are trying to 
end 

of large programs. But conventional the- 
ory predicts that the M’ITF does not de- 
pend on program size. 

TOWARD TRUE RELIABILITY 

Conventional reliability is deficient in 
two significant ways: It relies on an opera- 
tional distribution that may not exist, and 
its assumptions about sample indepen- 
dence do not hold. To correct these defi- 
ciencies and find a better theory, we must 
probe the correct sample space and exam- 
ine the chance of program failure under 
arbitrary circumstances. Unless we can 
find a true reliability theory - a theory of 
what Parnas calls trustwordmess, unlikely 
to fail catastrophcallJ - developers are 
buildmg on sand. When they make gener- 
alizations like “random system testing 
should replace unit partition testing,” or 
“inspections are better than testing,” they 
may be setting themselves up for disaster. 

Sampling basis. For any reliability theory 
you must have a proper sampling basis tc 
infer the probability of failure. Progran 
input is not an appropriate samplini 
choice because the statistical procedure! 
work only when samples directly probt 
the sources of failure. For programs, ran- 
dom testing over the input space is onlj 
tenuously connected to the design flaw: 
that reside in the code. Input-space sani- 
p h g  also fails to predict the direct rela. 
tionship between defects and progran 
size because program charaaeristics arc 
invisible. 

The  programming analogy to m e  
chanical reliability would be better if thc 
sample space were closer to the source o 
defects, the program text. If inspection 
were perfect at detecting failure, it woulc 
make more sense to inspect a sample o 
code, and infer the quality of uninspectec 
code, than to sample executions and infe 
the quality on unexecuted inputs. Inspec 

compute the reciprocal of the greater the danger of aivializ- 

hence the more likely that it 

ethod reliable (not in the sta- 
sense of the word) for a 

program if there are no mis- 
leading test sets for that pro- 
gram &at satisfy the method.1 

dom reliable, and reliability is 
root Unfortunately, methods are sel- 

Duran and Simeon Ntafos, 
bund that random testing and 
partition testing are more sim- 
llar than you mght think3 

For that reason, you can ex- 
pres an estimate of the @ty 
that c a n b e d i n t o  software 
withpartitiontestingasan 
MTTX Atypical unit partition 
testmightcontain 1OOpoints.If 
all succeed, and you assume the 
test is random, there is 80 per- 
cent d d e n c e  in an= of 
about 62 executions. This very 
modestestimatehardly~es 
the usual claim that software has 
been tested and works. 
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rions are h;irtl to quantify and control, 
however, SCI a different kind of testing is 
needed. one that samples the space of ac- 
rual defects. 

Sampling the state space. Both Pamas and 
1 have proposed using the program’s state 
space as the sampling domain for trust- 
worthiness,’,” hut this i s  not a good practi- 
cal approach. The argument for using it is 
that failure results from textual flaws, or 
taults, when paiticular circumstances arise 
at the control point that contains the fault 
-which describes the state space exactly. 
I t  is a tuple of intemal-variable values and 
a value of the location counter. The sam- 
pling distrihution should be uniform be- 
cause failure is no more likely for one state 
location than another. Such a theory cor- 
rectly predicts that failure probability is 
proportional to program 

good approximation. Thus, I assume that 
a computation’s data states contain only 
variable values on whch the result de- 
pends. Each computation starts with an 
input, and may have an initial “correct” 
state subsequence, then the first bad spate 
occurs, followed by a “failed” portion of 
the sequence. Thus, sampling the input 
space doesn’t work. Inputs that are appar- 
ently independent can lead to the same 
state and thus are not independent sam- 
ples, relative to failure in that state. 

Data fan-in/-ovt. The crux of appropri- 
ate state-space sampling is the idea of state 
collapse - when different computations 
contain common sequences ofstates. State 
collapse can occur through fan-in -when 
two paths in a program join or when the 
values taken on by intemal variables are 

restricted.’ An example is 
size.’ 

U n fo r t ii  n a t e 1 y , t h e 
state space of most pro- 
grains is far larger than the 
input domain, so a theory 
that requires sampling 
thls much space is not at- 
tractive. 

Larry Morel1 and Jeff 
L70as suggest an altema- 
tive? T h e y  argue that 
points of the state space 
are themselves correlated. 

- 
Capturing the 

development process 
lets us expose likely 

sources of defects and 
test for them with 

appropriate 
partitions. 

Starting with an input, 
each program normally goes through a se- 
quence of states (its Computation) to reach 
an output. The computation steps are de- 
fined by the operational semantics of the 
program statements as mappings from 
state to state. 

Hence, when some input leads to pro- 
gram failure, the entire computation has 
“failed,” so sampling states from that se- 
quence overemphasizes failure. States 
from a single correct sequence are corre- 
lated in a sinlilar way. To add to the confu- 
sion, the same state may appear in both 
failed and correct computations. 

You don’t have to sample variable val- 
ues in a state if the final result does not 
depend on them. Although the problem to 
determine such dependencies is generally 
unsolvable, dataflow techniques give a 

an assignment statement 
with a constant right side. 
This statement produces 
a kind of ultimate fan-in 
because after its execu- 
tion, theassignedvariable 
has lost whatever range of 
values it might have had; 
it now can have only a 
single value. 

Fan-out occurs when 
the possible values in 
states expand. For exam- 
ple, an input statement is 

the ultimate fan-out: whatever restricted 
values the input variable might have had 
before the statement, after it, any value is 
possible. 

Many program statements do not fan 
in or out. For example, an assignment 
statement using an arithmetic operator 
like + has as many state value possibilities 
after execution as it did before. 

When programs have a good deal of 
fan-in, their possible data states collapse to 
a set that can be smaller than the input 
domain. Many inputs lead to exactly the 
same computation, and intuitively it is the 
computations that should be sampled in 
testing. When programs have a good deal 
of fan-out, there is a combinatorial explo- 
sion of the state space because coverage of 
early states does not imply coverage of 

_ _ _ _ _ ~ ~  ~ ~~~ ~. ~ ~ ~~~~~ 

later states with a wider value range. 
When programs neither fan out or in, 
each input leads to a different computa- 
tion, and appropriate state-space sampling 
is the same as input sampling. However, 
the appropriate distribution is uniform, 
not the operational profile. 

Thus, in some cases, far fewer test 
points are needed to establish trustworthi- 
ness than are needed to satisfy conven- 
tional reliability. In other cases, the two 
require about the same number of points, 
but with different test distributions; And 
in still other cases, trustworthmess can re- 
quire vastly more points than reliability, 
with the full exploration of each state as an 
upper bound. 

Interestingly, computation diversity 
and fan-out occur when programs read 
input throughout a computation rather 
than just at the beginning. Intuitively, such 
programs are interactive, and make essen- 
tial use of saved state. The ultimate patho- 
logical case is that of real-time programs, 
in whch inputs and state expansion appear 
at any point in the computation because an 
interrupt occurs. 

HOW SHOULD WE TEST? 

Although testing certainly has its limi- 
tations, it is unwise to discard it as a useful 
part of software development. The devel- 
opment process is beginning to be studied 
and controlled. Capturing the process 
provides the opportunity to expose likely 
sources of defects, and to test for them 
with appropriate partitions. Conventional 
random testing also has its merits. 

P~tition testing. The box on pp. 22-25 
describes the weaknesses of partition test- 
ing to dispel the idea that a successful test 
means the software is reliable. But I would 
never recommend that you abandon par- 
tition testing altogether - and particu- 
larly not in favor of system-reliability test- 
ing. 

Partition testing is the developer’s best 
tool to probe the software for specific de- 
fects. Of particular importance are defects 
that lead to failures with catastrophic con- 
sequences. However infrequent a cata- 
strophic failure may be, it is worth expend- 
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ing effort to preclude it, and a partition 
devised by considering the failure possibil- 
ities (for example, using a safety fault tree6) 
is just the way to attack the problem. In- 
deed, you should use partition testing 
whenever you suspect a particular source 
of defects, with a partition emphasizing 
the defect-prone input. Testing in that 
partition gives little confidence in overall 
reliability, but it is the only means of gain- 
ing confidence that the Particular problem 
will not arise. 

For example, a module that undergoes 
a specification change late in develop- 
ment, or one that fads an inspection, is an 
obvious potential defect source. Not only 
should you heavily exercise its structural 
and functional unit-test partitions, but 
when it is integrated into a system, the 
whole should be tested with a partition 
that singles out module execution. 

Partition testing has many advantages. 
A functional partition test can be designed 
beginning in the requirements stage of de- 
velopment. Test data for structural parti- 
tions can be automatically generated, and 
even if hand generated, the tester has a 
systematic goal and automatic support. 

If you have a complex piece of software, 
whose usage patterns you do not know, 
and you have a vast nonnumeric input do- 
main, partition testing is probably your 
only choice. 

Random testing. Preliminary results 
(based on a somewhat doubtful model that 
uses failures “tagged” by their origin’) in- 
dicate that uniform-distribution, state- 
space testing should be much better than 
partition testing at  establishing confidence 
in apparently defect-free software. 

However, random testing is not practi- 
cal because it requires many orders of 
magnitude more test points than current 
practice. Even if you have an oracle - 
some means of mechanically deciding if 
program results are correct - random 
testing is barely feasible. Without an ora- 
cle, it is not feasible at all in most cases. 

But random testing is the theoretical 
model that can answer fundamental ques- 
tions that have too long been ignored. If, 
in fact, testing for a reasonable reliability is 
impractical by any means, then testing is 

nerely a defect-detection method that 
nay not stack up well agamst others like 
nspections, and we should be changing 
3ur quality-assurance methods accord- 
ngly. On the other hand, if we can find a 
;mall state space to sample, we can make 
wen trustworthiness practical. 

Measuring the state-space coverage a 
:est giyes is not impractical. Well-known 
program-instrumentation techques  can 
record test penetration and statisticallyan- 
dyze the results. If the state-space theory 
is correct, such measurements can pin- 
point states that have been poorly tested, 
and leave the difficult problem of how to 
reach them to the tester. 

Voas has given the problem a novel 
twist with practical promise. He directly 
probes the state space by perturbing a 
state, then monitoring whether the per- 
turbation affects program results. If not, 
that state (or the corresponding statement 
of the program) is not very “sensitive,” 
since even if the data state were incorrect 
(as arranged by the perturbation) the re- 
sults are correct. The lesson for program- 
mers is that faults in insensitive statements 
will be hard to detect by testing. Perhaps 
the cleverest part of Voas’s idea is that he 
need not consider the input space, so he 
doesn’t have to reach the data states he 
perturbs or consider the operational pro- 
file. 

e main points I have tried to make in F; this article are 
+ In testing for true reliability, clever 

partition methods may be no better than 
random testing, and if they are not, then 
no practical testing technique exists for 
guaranteeing software quality. 

+ The analogy to mechanical reliabil- 
ity is a poor one for software. 

+ More research is needed on trust- 
worthiness; it may be that the state explo- 
sion is not so important as it seem. Corre- 
lated states are grouped into program 
computations, which may be the appro- 
priate entities to sample. 

+ It may be possible to statically char- 
acterize programs for which the combina- 
torics of testing is not forbidding, giving 
precision to the desirable quality of “test- 
ability.” Testability is also dynamically de- 
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scribed by Voas’s idea of sensitivity. EX 
periments are needed to determine i 
these theoretically appealing ideas are ir 
fact related to testing difficulty. 

If testing for quality is the goal, then wi 
must find a solution to the oracle problem 
Until random tests of a million points be 
come practical, testing is only a poor com 
petitor for other heuristic defect-detec 
tion methods. I 
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