
Annals of Software Engineering 10 (2000) 293–310 293

Software is different

Boris Beizer

ANALYSIS, 1232 Glenbrook Road, Huntingdon Valley, PA 19006, USA
E-mail: bbeizer@sprintmail.com, bbeizer@acm.org, bbeizer@ieee.org

The reliability notions that have worked so well for hardware do not work for software.
It is not just reliability issues that makes software engineering different than most tradi-
tional engineering disciplines, but fundamental, usually unrecognized paradigms. Twelve
assumptions that are rarely questioned in traditional engineering fields are explored and
each is shown not to hold in software engineering. These differences between software
engineering and traditional engineering are often at the core of misunderstandings between
their practitioners.

1. The problem

Who will argue that software quality is not a problem? As software users, we do
not get the quality we need and, as software developers, we do not deliver the quality
users want – and if we do, it is at a higher cost and takes longer than our managers
and marketeers would have it. Who, if anybody, is to blame? The usual practice has
been to put the blame on software designers, implying that if only they worked more
carefully, then these perennial software quality problems would be solved. That may
be a popular thing to do, but it will not lead to better software. Blaming programmers
has been the prevailing approach for a half century of software development: It has
not solved the problem yet, so it is time to look in different directions.

Quality assurance, as a discipline, is deeply rooted in the manufacturing process.
The design of a widget, say, is rarely questioned because most design defects have been
wrung out before manufacturing begins. If there is a problem, it is usually a production
problem. The core of the differences between software quality and widget (traditional)
quality is that traditional quality people often have preconceived notions about the
world. Although these assumptions are rooted in common sense, they do not apply
to software. Users also make the same common-sense assumptions about software.
And, unfortunately, many software developers also accept these misconceptions. The
consequence is that users, managers, and we who develop or assure software’s quality,
have inappropriate expectations for it.

 J.C. Baltzer AG, Science Publishers



294 B. Beizer / Software is different

2. The fundamentally flawed assumptions

2.1. General

In his classic and, at the time, revolutionary book, Games People Play [Berne
1964], Eric Berne talks about what he calls “crossed transactions.” In each of us,
Berne says, there are three persons: a parent, an adult, and a child. Therefore any
interaction between two individuals has 81 possible variations if we consider all the
hidden agendas. Figure 1(a) shows the best kind of open transaction, of adult talking
to adult while figure 1(b) shows the worst: what Berne calls a “crossed transaction.”

In useful transaction, both parties are talking to each other, adult-to-adult, without
the interfering hidden agendas of either’s internal parent or child. In the crossed
transaction they are talking at each other. The traditional QA type, who I call Mr.
Q.A. Widget, says:

“Why can’t you software types adopt proper methodology and quality assurance
methods, such as statistical quality control, in your work?”

An adult-to-child transaction. The hidden assumption in Widget’s criticism is
that software types are ignorant, that they do not know that methodology and quality
are important, or that there is such a thing as statistical quality control. The software
engineer is no better, because she counters:

“You boob! You don’t even begin to understand the issues. Your notion of
software is something a high-school kid knocks off in Basic in a few hours. And your
notions of ‘proper’ engineering methodologies don’t apply to software!”

They are crossed transactions. Conversation must be adult-to-adult in both direc-
tions before communication is possible. We must see where each party is coming from
as a step in achieving that objective. Widget QA is rooted in traditional engineering
disciplines: old, and for civil engineering, ancient traditions. Ancient traditions that
work very well, thank you – for traditional engineering. The underlying assumptions
of traditional engineering are part of the fundamental paradigms of Western thought.
Software engineers should not blame traditional engineers for unconsciously invoking
these paradigms because it takes much effort and brain twisting, as I am sure most

(a) (b)

Figure 1. Useful and crossed transactions.



B. Beizer / Software is different 295

software engineers forget, to get those restrictive ideas out of their head so that they
can do good software.

Conversely, the software engineers, who have internalized a new set of paradigms,
falsely assume that any rational person would understand them. They do not. Most
people just do not think digitally. And shouting louder does not get the point across
any more than shouting louder helps a non-English speaker understand English (or any
other language).

To communicate, we must expose the fundamental assumptions on each side and
contrast them: by understanding the differences we break the crossed transactions and
engage in real adult-to-adult communications. That is what this essay is about.

2.2. Physical constraints

Whether or not we are physicists, we have an intuitive understanding of the
physical world. Apples, when released fall down, not up. Actions are causally related
to consequences. We expect things to behave sensibly. Our intuitive notion of what is
“sensible” is based on common-sense experiences, learned from earliest childhood, and
rooted in the physical world. The software world is neither physical nor constrained
by physical laws. It is closer to the psychic world of human behavior than to the
physical world. Think of how long it takes to get insights into how people behave:
most of us take a lifetime at the attempt and usually do not succeed.

The corollary to assuming that software should behave like physical things is the
contradictory notion that software is easy to build and easier to change. Here is the
syllogistic logic of this unproductive thinking:

1. If software were decent, it would behave like physical systems and obey physical
laws.

2. Software does not behave like physical things. It is not even physical. Therefore,
it is indecent.

3. Poured concrete and rolled steel (physical things) are hard to change.

4. Software is easy to build. Any high school kid who knows Basic can do it.

5. Therefore, software is easy to change.

The hardest things to change in this world are people’s heads – the way they
think. Fifty centuries of religious warfare has taught us that. When such thoughts are
encapsulated into text, say in the form of programs and documentation, they become
even harder to change. Which is tougher to change: a poured concrete foundation
that is wrongly sized or the head of the engineer who sized it? You know the answer:
you will not change his head until he sees the wrecking ball taking his mistake apart
– and even then you might not succeed. Changing software does not merely mean
changing a few lines of code. Before that can happen you must change things in a
programmer’s head. Contemporary software is not the work of one programmer but
of dozens and hundreds: all of their heads must be changed before that code can



296 B. Beizer / Software is different

change. The physical world is easy to change by comparison: an enthusiastic guy
with a bulldozer can do that.

I hope that in the future we will understand the software world as well as we
understand the physical world. Surely there are “laws” that are as binding to software
as physical laws are to the physical world. There must be laws that will tell us how
immutable our software is at various stages of development just like we can predict
the mutability of concrete for any given hour after it is been poured. But we have yet
to discover such laws. Most of the differences between software systems and physical
systems discussed below devolve from a faulty expectation that software follows the
laws of physics. That is the first faulty notion to drop.

2.3. The principle of locality

2.3.1. General
In the physical world, the consequences of an action or a bug are closely related

in time, space, and severity to the cause. I call this “The Principle of Locality.” In the
software world, the consequences of a bug are arbitrarily related in time, space, and
severity to the cause. Simple bugs in simple software often have localized impact; but
as the size and complexity of software increases, the locality principle is increasingly
violated.

2.3.2. Space locality
Simple bugs obey the principle of locality and are usually found and eliminated

by programmers before they start formal testing. The difficult bugs that survive testing
and eventually plague users with misbehavior are not like that. If you have a problem
with the windshield wipers of your car, you do not expect it to affect the radio. If you
cannot tune your radio to a station, you do not expect your right-rear tire to blow out.
Physical systems have space locality, software does not. The use of constructs such
as global data (to meet performance demands) exposes software to the possibility of
bugs that do not have space locality. The main reason that programmers encapsulate
their programs into subroutines is an attempt to promote locality. Contemporary ideas
such as object-oriented programming are also attempts to improve locality1. Good
programmers are, of course, aware of this problem and good programming and testing
practices consisting of systematic unit, integration, and then system testing, are in part
dictated by the desire to catch bugs in the most local scope possible. To understand
software and how it can misbehave, we must change our expectations and accept the
fact that THE SYMPTOMS OF A BUG CAN BE MANIFESTED ARBITRARILY FAR
AWAY (in terms of functionality, location, etc.) FROM THE CAUSE. To have others
(e.g., Q.A. Widget, users) understand software quality, they must understand, and more
important, accept this fundamental difference.

1 But part of that package, dynamic binding and inheritance, works the other way and can destroy locality.



B. Beizer / Software is different 297

2.3.3. Time locality
We have not yet seen bugs that travel in time – although it sometimes seems that

way. In the physical world, we expect immediate consequences to bugs. That is in
keeping with our common-sense notion of causality. The tire blows out causing the car
to lurch to the right immediately. Typically, cause and effect are closely related in time.
The physical world does surprise us now and then when the consequences of an action
are not felt until hours, weeks, or years after the fact. However, this is exceptional, and
when it does occur, we usually make a special note of it. In software, the consequences
(i.e., the symptoms of a bug) are manifested arbitrarily and unpredictably close or far
in time from the cause. In software, this is not the exception, but the rule. While the
symptoms of simple bugs are closely located in time to the moment at which the faulty
code is executed such bugs usually do not survive to a working product. When the
symptoms show up mostly results from the way the user employs the software. Not
just the general way, but the specific (and unpredictable) sequence of actions executed
by the user. No programmer can anticipate all such scenarios: yet bug-free software
demands that they do. Good software development practices require that programmers
execute specific tests, such as stress and synchronization tests designed to catch such
bugs. They also use automated audit tools to detect if any data or program items have
been corrupted as a consequence of running the program – because it is most often
corrupted data and programs that lie in wait like time bombs with uncertain fuses. So
we must again change our expectations and accept the idea that THE SYMPTOMS OF
A BUG CAN BE MANIFESTED ARBITRARILY LONG AFTER THE EXECUTION OF
THE FAULTY CODE.

2.3.4. Consequence locality and proportionality
We expect justice in the world. “Let the punishment fit the crime,” we say.

We expect justice in our legal systems when we limit liability to be proportional to
damage. Things wear out in the physical world. Knives get gradually dull. It is not as
if the knife cuts perfectly today and tomorrow it cannot cut at all. Our tires wear out
gradually, so we gradually lose road-handling; not catastrophically and suddenly when
the tread depth falls below 4.3 mm. The intuitive notion of wear-and-tear applies to
the physical world, at least in its simplest aspects. Many physical situations do exhibit
disproportionate severity: a threshold is reached and the part no longer functions,
resulting in catastrophic failure: but again, these are exceptional. Our notion of the
world is analog rather than digital, and in analog systems reactions are generally
proportional to action. “To every action there is an equal and opposite reaction.” Ever
since Newton said it, we have believed it: not just theoretical physicists, but music
teachers, taxi drivers, users, children, and even politicians. It is not true for software.

Justice is not proportional in the software world. Individual bugs do not exhibit
consequences in proportion to the error: an error in two bytes does not produce
symptoms that are twice as severe or that occur twice as often as those produced by
an error in one byte. Furthermore, the same bug, depending on circumstances and the



298 B. Beizer / Software is different

specific history of usage, can have consequences ranging from trivial to catastrophic.2

There is also no relation between the severity of the symptom and the effort or lines
of code that must be changed to correct the bug. All such proportionalities between
bugs and symptoms do not exist for software and, indeed, it is likely that all such
proportionalities are theoretically impossible.

Adding to the problem is the fact that a given bug may exhibit many different
symptoms and a given symptom may be caused by many different bugs. There has
never been (except for trivial software) and it is likely that there never will be, any
consistent way to map causes onto effect or effect onto causes. THE CONSEQUENCES
OF A BUG (i.e., the symptoms) ARE ARBITRARILY RELATED TO THE CAUSE.

2.4. Synergistic bugs

When catastrophes occur in the physical world, we want to find a cause – that is
consistent with our common-sense notions about the world. If there is a design defect
in a product, then someone can be found who made an error. If there is a manufacturing
defect in a product, then a tool is maladjusted or a person needs retraining. The idea
of personal responsibility is one of the first things we learn as infants and learning that
is a basic step in our socialization. And if we are personally responsible, it follows
that it is possible to fix responsibility (i.e., blame) for all catastrophes.

Not so with software. While the simplest unit bugs can be localized to an error
in a single routine, good unit tests find them long before the product is fielded. Inte-
gration bugs are more insidious and difficult: the bugs that result from unpredictable
interactions between otherwise correct components. For them, it is not possible to
point to a specific line of code and say “That is where the bug is!” and, therefore “The
person who wrote that line is to blame.” Most integration bugs are distributed. Not
one program location is wrong, but several. Furthermore, it is not a set of distributed
locations that is wrong because the individual components are correct. The bug is
synergistic. It is manifested only when two or more components are used together.
There are no sure ways to test all such combinations, or even to conceive of them.
Good testing does require a systematic approach to finding such bugs and most can be
eliminated before the software is used: but it is inevitable that some will remain and
elude the most careful testing because it is both theoretically and practically impossible
to test all possible combinations.

Righteous programmers can do their best and bad things will still happen. Recog-
nizing this possibility is a paradigmic shift, especially for users and the legal system –
it is often impossible to blame anyone for a bug.3

2 This is exploited by experienced software testers. An initial symptom might be something innocuous
such as a momentary hesitation in the processing or an unexpected flicker of the screen. The tester then
varies parameters of the scenario, following a path of ever-increasing severity, to create a new scenario
that results in a catastrophic failure.

3 Which is why I use the word “bug” rather than “fault.” In today’s big, complex, software, most bugs
that survive proper unit testing are not anyone’s “fault.”



B. Beizer / Software is different 299

2.5. Complexity

2.5.1. General
The issues of software quality are all about complexity and its management.

Software is complicated. Software developers do not make it so: the users’ legitimate
demands and expectations do. Let us compare software with physical systems. Which
is more complex:

1. A word processor or a supertanker?

2. A database management package or a 100-floor building?

3. All the monuments, pyramids, and tombs of Egypt combined or an operating sys-
tem?

I can think of only two things more complicated than software: aircraft (even
excluding their software) and a legal system. 650 megabytes of software can be
stuffed into a little 11.5 cm CD-ROM and that is a decent part of a law library.
We can measure the complexity of an engineered product by one of two reasonable
ways: total engineering labor content or total mass of documentation produced. The
supertanker probably represents less than 10 work years of engineering labor content
– never mind how many work years it takes to build it physically. The word processor
is about 200 work years. A 100-story building is about 30 work years. The data
base package is also about 200 work years. Each of those monuments probably took
at most a year to design by a master builder and an assistant or two. So we might
have a few hundred work years of engineering in the combined Egyptian buildings.
Operating system labor contents (including testing) is measured in thousands of work
years. Similarly, today it is easy to measure documentation size for general engineering
products and for software. Software documentation is measured in gigabytes; most
other engineered products in megabytes.

Comparing software to a legal code is more appropriate than comparing it to
physical products. Humans have had only stumbling success in crafting their legal
codes and have been at it for five thousand years that we know of. Overall, I think
that what software engineers have accomplished in 1/100 of that time is remarkable.

2.5.2. Proportional complexity
If you add an increment of functionality to most physical products, it is done at a

proportional increment in complexity. Think of a car or an appliance. More features,
higher price. Not just because the vendor can get it, but because there is an underlying
proportional cost, and therefore, complexity increase. Complexity is generally additive
in the physical world. In software, by contrast, complexity tends to follow a product
law. That is, if you have two physical components A and B, with complexity CA and
CB, respectively, the complexity of the combination (A+B) is proportional to CA +CB;



300 B. Beizer / Software is different

but for software the resulting complexity is likelier to be closer to CA ·CB or worse!4

How often have you heard “We only added a small feature and the whole thing fell
apart?”

Here, if there is blame to spread, I must put it onto software developers, managers,
and especially marketeers, who despite years of sad experience continue to ignore this
fundamental fact of software life. There is a constant, but ever-unfulfilled, expectation
that it is always possible to add another bell, another whistle, another feature, without
jeopardizing the integrity of the whole. We cannot do that for buildings even though
it probably follows proportional complexity growth. How many floors can you add
to an existing building before it exceeds its safety factor and collapses? How much
more traffic can you allow a bridge to take before it collapses? It is difficult enough to
add incremental complexity to physical products and we realize that ultimately, safety
margins will be exceeded. The same applies to software, but because the complex-
ity impact tends to a product or exponential law, the collapse seems unpredictable,
catastrophic, and “unjust.”

2.5.3. Complexity/functionality inversion
In most physical products, more functionality means more complexity. Add

features to a product and there is more for the user to master. There is a direct
relation between a product’s physical complexity and the operational complexity that
the product’s users see. Software, by contrast, usually has an inverse relation between
the operational complexity the user sees and the internal complexity of the product.
That is not unique to software: it is an aspect of most complex products. How easy it is
to dial an international telephone call: think of the trillions of electronic components
distributed throughout the world that it takes to achieve that operational simplicity.
While not unique to software – in software, unlike physical products, this inversion is
the rule.

Users of software rightfully demand operational simplicity. Menu-driven soft-
ware based on a Windows motif is easier to use than command-driven software:
so they want windows. I would rather move a document by grabbing it with the
mouse and dropping into another directory than type “MOVE document name TO
target directory name.” I remember the bad old days when to get a program
to run you had to fill out two dozen job control cards in one of the worst languages
ever devised, JCL. Double-clicking an icon is much easier. But what is the cost of
this convenience?

My latest word processor catches me when I type “hte” instead of “the,” or
catches my error when I type “sOftware” instead of “software” – and do not think
that getting these deliberate errors to stick was easy! A new graphics package learned
the pattern of my editing after a few figures and automatically highlighted the right
object on the next slide, saving me a dozen key strokes and mouse motions. And the

4 That follows from the interaction of features. If each feature interacted with every other feature, only
one at a time, then we would expect a square-law complexity growth. If they interacted in all possible
ways, the growth law would be exponential.



B. Beizer / Software is different 301

latest voice-writer software eliminates the keyboard for the fumble-fingered typists of
the world. All great stuff! But what are the consequences? Internal complexity!

The increased internal complexity can take several forms:

(a) Increased code size. This is the typical form it takes.

(b) Algorithmic and intellectual complexity. The code mass can actually decrease,
but this is deceiving because code complexity has been traded for intellectual
complexity. The resulting software is harder to understand, harder to test, and
line-for-line, likelier to have a buggy implementation. Furthermore, not only must
the implementation of the algorithm be verified, but the algorithm itself must first
be proven – adding yet more opportunities for bugs.

(c) Architectural complexity. The best example here is object-oriented software. The
individual components can be very simple, but the over-all structure, because of
such things as inheritance, dynamic binding, and very rich interactions, is very
complex.

Operational convenience in software use are usually bought at the cost of great
increases in internal complexity.

2.5.4. Safety limits
It is incredible to me that the notion of safety limits and the uncompromised ethi-

cal principle of traditional engineering that such safety limits are never to be exceeded
are discarded when it comes to software. The traditional engineer when faced with
uncertainty over safety limits has always opted to be conservative. It took decades
to gradually reduce the safety limits for iron bridges when metal began to replace
stone in the Eighteenth century. It is only through experience that safety margins are
reduced. Yet, when it comes to software, perhaps because software has no physical
reality, not only are software developers urged to throw traditional engineering caution
aside and boldly go where none have gone before, but even the very notion that there
might be (as yet unknown) safety limits is discarded. And sadly, all too often, it is an
engineering executive trained in traditional engineering that urges that safety limits be
discarded.

What are the safety limits for software? I do not know – nobody knows. Never-
theless, we agree that it has something to do with our ability to maintain intellectual
control. That, in turn, is intimately tied into complexity and how it grows. One of
these days (I hope) we will have “Nakamura’s Law.” This (yet to be discovered law by
an as yet unborn author) will tell us how to measure complexity and predict reasonable
safety margins for software products. But we do not yet have Nakamura’s Law. So
what should we, as responsible engineers do, when faced with a situation in which
we do not know how to predict safety margins? Do what our traditional engineering
forebears did two centuries ago when they did not know how to calculate safety limits
for iron bridges – be very conservative. In sailing, we say that the time to reduce
your sails is when the thought first occurs to you – because if you do not shorten your



302 B. Beizer / Software is different

sails then, by the time the wind is really strong and you must reduce your sails, the
very strength of the wind will make it impossible to do so. The time at which you
have lost intellectual control is the time at which it occurs to you that you might be
in danger of doing so. If you think that it might be too complicated, it is.

“We cannot do that,” the marketeer says. “We’ll lose too much market share
to our competitor if we do not add this bell and that whistle!” Back to iron bridges.
What will your long-term market share be if half your bridges collapse?

2.6. Composition and decomposition

2.6.1. Composition principle
The composition principle of engineering says that if you know the characteristics

of a component, then you can, by applying appropriate rules, calculate the equivalent
characteristics of a system constructed from those components. This allows us to
deduce the strength of a bridge from the strength of its girders and design without
building and testing that bridge. Similarly, the behavior of a circuit can be inferred
from the behavior of resistors, transistors, etc. and the circuit design. Nowhere is the
principle of composition more important than for reliability. There is a well-proven
hardware reliability theory that allows us to predict the reliability of a system from
the reliability of its components without actually testing the system: for most complex
hardware systems, there would not be enough time in the expected lifetime of the
system to do the testing needed to experimentally confirm the reliability. Typically,
expected test time to confirm a reliability value is an order of magnitude greater than
that value. Thus, to confirm a mean time to failure for an aircraft autopilot of 10,000
years, we need 100,000 years of testing (one autopilot for 100,000 years or 100,000
autopilots for a year). However, because of hardware reliability theory is composable,
we do not have to do this. We can get a trustworthy prediction by experimentally
testing components and by using analytical models to predict the reliability of the
autopilot without running 100,000 years of tests.

Does a similar composition principle hold for software? No! Or if one exists, it
has not been found yet. The only way to infer the reliability of a piece of software is
to measure it in use (either real or simulated) and there is no known theoretical model
that allows one to infer the reliability of a software system from the reliability of its
components. It is reasonable for a user to expect that his operating system will not
cause unknown data corruption more than once in every ten years. But to assure that
to statistically valid certitude would require 100 years of testing; and because of the
vast variability of system configurations and user behaviors, what is learned from one
case cannot be transferred to another.

So even if we could build bug-free software, we have no present means to confirm
if we have or have not achieved our goal, or the quantitative extent to which we have
failed to meet the users’ very reasonable quality expectations. This is an area of
intensive research, but progress has been slow. The user is driving this. But they
cannot have it both ways. They cannot, on the one hand, ask for ever-increasing



B. Beizer / Software is different 303

sophistication and functionality, AND on the other hand, simultaneously not only
demand that we maintain the reliability of the program’s previous, simpler incarnation,
but that we improve the reliability, and furthermore, prove that we have done so.

The above has addressed only the limited objective of reliability determination.
But it is not the only composability issue. There are important composability ques-
tions for performance, security, accountability, and privacy, to name a few. For more
general composability issues, the problem is worse and progress is even more meager.
Composability, which is fundamental to traditional engineering disciplines, cannot be
assumed for software.

2.6.2. Decomposition principle
“Divide and conquer!” The analysis of complex problems in engineering is

simplified by this fundamental strategy: break it down into its components, analyze
the components, and then compose the analyses to obtain what you want to know about
the entire thing. We take it as given that in traditional engineering, decomposition,
and therefore divide-and-conquer, is usually possible. Of course software engineers
adopt this strategy to the extent that they can. But unlike traditional engineering, there
are not as yet any formal decomposition methods. There is the beginnings of such
methods, pragmatically useful heuristics, lots of folklore, but nothing rigorous yet. As
laudable as hierarchical decomposition and top-down design might be, for example,
they are nevertheless heuristic and do not have the mathematically solid foundation
that, say, decomposition of a Laplace transforms in circuit theory has.

The biggest trouble is that when it comes to quality issues and bugs, the very
notion of decomposition, and even its possibility disappears. This is so because the
act of decomposing hides the bug for which we are looking. Two routines, A and B,
by themselves work. Even if there is no direct communication between A and B it is
possible that the combination does not work. Conversely, two routines A and B are
buggy, but one bug corrects the other so that the combination does work. Divide and
conquer and decomposition works and is useful for simple unit bugs. But for competent
software developers it is rarely the simple unit bug that causes the catastrophic failure
in the field.

2.6.3. Composition/decomposition reciprocity – analysis and synthesis
Composition and decomposition are opposite sides of the same engineering coin.

Another slice at the same concepts is the idea of analysis versus synthesis. All tra-
ditional engineering fields have both an analytical side (tell me what I want to know
about the behavior of this thing) and a synthetical side (tell me how to build a thing
that will have the specified behavior). Traditional engineering fields alternate between
periods of analysis dominance and synthesis dominance. That is, at any given point
in time, one or the other dominates the new literature and the emphasis, especially
in teaching. I will use electronics as an example. In the 18th century, there was not
much to synthesize about electricity, other than to make it happen. Then people such
as Franklin started to study it (analysis). The analytical view dominated, culminating



304 B. Beizer / Software is different

in Maxwell’s equations, which seemed to explain everything. Then, as electricity be-
came an industry, the focus shifted to synthetical methods – how do I design? During
the Second World War, design and synthesis outstripped analysis. It did not matter
how a radar-tube (e.g., magnetron) or waveguides worked: we needed working radar,
whatever the analytical principle behind it. After the war, the emphasis shifted back
to analysis to explain how all those strange devices crafted by trial and error during
war worked. Now, in semiconductor circuit design, synthesis appears again to have
outstripped analysis, which is playing catch-up because the new synthesis tools depend
on it.

The computer industry is only 50 years old. It has (understandably) been domi-
nated by synthesis – how to write working code – albeit guided by heuristics instead
of formal synthesis tools. We, speaking for software developers, do not yet have an
analytical infrastructure. We are only into the first round of synthesis-analysis alter-
nations and it will take a few more rounds before we know what we are doing. It
would be nice if we had a few centuries to learn how to do what we do, but our users
will not let us. I do not offer this as an apology, but as an explanation. It is also a
matter of setting realistic expectations; for software developers and for users. Users
always want magic, so it is about time that we first admit to ourselves that we do
not have firm guidance for what we do and perhaps then to our users that there are
risks associated with ever-increasing complexity without benefit of either analytical
principles or synthesis tools.

2.7. Quality of what?

In traditional engineering, quality is easy to define and measure. Quality metrics
fall into two broad categories: structural (tolerances) and behavioral (operational failure
rates). Also, there is generally an empirical relation between tolerances (or rather, the
lack thereof) and failure rates. It is possible to say that if various parts are built
to specified tolerances then it follows that the failure rates will be within specified
bounds. The fact that such relations exist (be they developed from theory or determined
empirically) is fundamental to statistical quality control of manufactured objects. There
is no agreed way to measure software quality and despite close to 30 years of trying,
no such way appears to be on the perceptual horizon. Here are some past proposals
and what is wrong with them.

1. Bugs per line of code. There’s no agreement that the most popular size metric,
“lines of code,” is the best metric to use (see section 2.8 below). Even if we
adopted some program size metric such as compiled token count, what has bug
density got to do with what the user sees? If most of the bugs are in low execution
probability code, then what does it matter if the bug density is high? Unless, of
course, it is life-critical software and that low probability code takes care of the
one-in-million situation. Then it does matter. Bugs per line of code is a property
of the software, but the failure rates the user sees is a property of the way that
software is used: so we cannot measure the code’s quality is unless we know how



B. Beizer / Software is different 305

it will be used. All bugs are not equal. Some bugs, or rather their symptoms,
are more severe than others. That also depends on expected user behavior. No
existing quality measure today takes bug symptom severity into account. Finally,
what is a bug? The answer to that one leads to deep ethical and philosophical
issues debated for 4,000 years and software engineers and/or quality experts are
unlikely to end the debate. So scratch that metric.

2. Defect detection history. Track the product over a time and note the mean time
between successive defect detections. When that time reaches a specified value,
declare the software fit for use. That is not even a measure of the software. It
is a measure of the stamina, imagination, and intuition of the test group. The
defect detection rate could get small because the testers ran out of ideas or are
incompetent.

3. User perceived failure rate. This is the most promising kind of measure, but it
is as much a measure of the user as it is a measure of the software. I almost
never use the graphics features of this word processor and I have never used the
mini-spreadsheet in it. This word processor supports 34 languages, of which I
use only one (American English). Overall, I probably use less than 30% of the
features and 98% of what I do depends on only 10% of the features I do use. The
very flexibility of software and our ability to pack it with features means that any
given user’s behavior is unpredictable and therefore, so is any usage-based quality
measure.

I could go on, but it would be a redundant recitation of software engineering’s
state of ignorance and disunity when it comes to how to measure quality. The software
quality issue is not that of the quality of a manufactured object whose design is the
result of engineering, but of the quality of the engineering process itself. There is no
evidence that civil engineers make fewer mistakes than software engineers do. In fact,
software engineers probably make fewer mistakes than any other engineering disci-
pline. Ask the critic the next time they decry software engineering’s lack of suitable
quality metrics, what metric do they use to judge the quality of their engineering in
contrast to the metric they use for the quality of their products?

It is a fundamentally new problem that has first surfaced in software, but that will
undoubtedly become more important in other fields of engineering as the complexity
of engineered products inevitably increases. We see this already in aviation. It is well
known that contemporary commercial aircraft disasters can rarely be attributed to a
single cause, but results from unfortunate conjunction of several causes. For example,
the accident is caused by: a failure of component X AND abnormal weather AND the
foreshortening of runway 25 AND the loss of the NOTAM that should have warned the
pilot of that fact AND . . . FAA accident reports are instructive reading because each
factor must be examined and a recommendation for its prevention made. Imagine if
we had to do a bug postmortem like FAA accident investigations and distribute specific
recommendations for that one bug to all concerned programmers? Do it for every bug
found? How much software would then get produced?



306 B. Beizer / Software is different

2.8. Quantifiability

Quantification in engineering is generally attributed to Galileo, although the Egyp-
tians, the Mayans, the Romans and later the Arabs were darn quantitative centuries
before. Whatever the genesis of quantified engineering, it has been a fundamental
part of the engineering paradigm for at least four centuries. It is assumed in tradi-
tional engineering fields that anything of interest can be quantified – that is, reduced
to numbers; and if it cannot be quantified, it is not engineering [Gilb 1995].

Not a bad assumption if it has been true for several centuries and has always
served engineers well in the past. But it is merely an assumption – a cherished belief,
a pragmatic observation – but not an immutable fact. There is no evidence that this
assumption of quantifiability applies to software at all. And there is considerable
evidence that it does not apply.

There are many other kinds of formal structures that cannot be quantified in the
ordinary sense of simple numbers, or even vectors of numbers. For example: partly
ordered sets, general relations, graphs. Quantification implies comparison (e.g., either
A > B, B > A or A = B): furthermore, in most engineering, quantification means
strict numerical comparison. But some things just do not compare that way. The
general rule is partial-, rather than strict-ordering. There are many (infinite) ways to
order things and the strict ordering of traditional engineering quantification is merely
the oldest and the simplest. Furthermore, our understanding of structures in computer
science makes it clear that we cannot willy-nilly assume that strict ordering applies.
While it is always possible to tag numbers onto partially ordered structures (e.g., leaf
count, node count, depth, etc.) such numbers may not capture what it is we want to
capture by the use of numbers, no more than “lines of code” captures what we mean
by “complexity.”

The fact that there is a huge literature on software metrics and that software
developers gather a lot of numbers about their products, does not mean that such metrics
are fundamentally correct, accepted, or even useful. There is a lot of ongoing research.
There have been many attempts to establish axiomatic foundations for software metrics;
but none are without flaws and without controversy. The state of the software metrics
art is at best in the pre-Galilean stage. What metrics there are, do not scale, do not
reliably transfer from one project to the next, do not compose, to mention only a
little of the ongoing controversy. Furthermore, it may be that any notion of software
metrics as we know them, are fundamentally flawed [Bauer 1995]. At best, the options
are uncomfortable: what design restrictions must be adopted so as to make software
quantifiable (an as yet unanswered, indeed, almost completely uninvestigated question)
and at worst, drop the entire notion of quantification for software and replace it with
something else – also as yet undiscovered. To promote the idea that quantification of
software at present has the same solidity as quantification in traditional engineering is
a distortion of the facts, misleading, and potentially dangerous.

Let us leave the formal math issues aside and restate it this way. To insist on
strictly ordered quantification (i.e., ordinary numbers) is to eliminate from consideration



B. Beizer / Software is different 307

most ways of measuring things in computer science. The assumption that interesting
and important aspects of software can always be represented by numbers (traditional
quantification) gets in the way of developing the kind of quantification appropriate
to software, if any such quantification exists – and it may be that any notion of
quantification will be incorrect. This is the second hardest paradigm shift of all.

2.9. Adequate knowledge

The most difficult paradigm shift of all is letting go of the notion that we can have
adequate knowledge. That too is an assumption. The Eighteenth Century Rationalist
[Ferm 1945] model of the universe, championed most eloquently by Rene Descarte, is
with us yet. The Rationalist model holds that the universe is a giant clockwork whose
gears and pinions are the physical laws. If you make enough measurements of enough
things, then in principle everything is predictable. That is, it is always possible to get
the information you need for any purpose whatsoever – whether it is worth doing is
another issue that we will not discuss here – but it is, in principle, always possible.

Old Rene did not have to deal with the Heisenberg uncertainty principle; with
Godel’s Theorem; with chaos. The Heisenberg uncertainty principle tells us that you
cannot make such measurements even if you wanted to. Godel’s theorem tells us that
if you had the measurements, you might not be able to do the calculation (or know
that you had finished the calculation). Chaos tells us that even insignificant errors or
variations in our measurements could lead to arbitrarily divergent predictions. The
theoretical ideal of adequate knowledge is based on very shifty foundations. It applies
on the common scale of physical objects: but not for the very small (atoms and
particles), not for the very big (the universe), and not for the very complex (software).

The above merely fundamental problems aside, software has an uncertainty prin-
ciple of its own. We cannot predict how the changes in our software will change the
users’ behavior. Sometimes we get complacent and think that we can. A few years
ago, who would have questioned the ultimate, ongoing, perpetual dominance of the
software industry by Microsoft? I did not. Did you? Yet, today, the arena has shifted
to the Internet and Microsoft looks more like a frightened elephant besieged by a pride
of hungry lions than Godzilla.

That is a dramatic example, but it happens daily on a smaller scale. We change
our software in response to perceived market demands, which in turn affects the market
and the users’ behavior, making any quantification based in whole or in part on user
behavior next to useless.

That the users’ behavior is unknowable is not the only barrier to adequate knowl-
edge. There are many others, of which combinatorial explosion is perhaps the biggest.
As Danny Faught [Faught 1996] likes to quote in his Internet signature: “Everything is
deeply intertwingled.” The ‘intertwingling,” meaning the combinatorially intractable
potential interaction of everything in software with everything, provides a practical
barrier (even with big computational iron) to what could be analyzed even if all the
facts were known and none of the fundamental problems discussed above existed.



308 B. Beizer / Software is different

3. What we can we do about it

3.1. The world in which we live

All of us together are unlikely to solve the open problems of software engineering
discussed above. We cannot wait for the unborn Nakamuras to publish their Five Laws
of Software Engineering. We cannot call for a moratorium on software development
(civil engineers tried that in the early 19th century when iron bridges collapsed all
over the landscape, to no avail). Those are things we cannot do. We can start to
change our own paradigms, then our managements’ paradigms, and eventually, our
users’ expectations: I have no hope of ever changing the marketeers’ way of thinking.
Here are some of the ways in which we could do that.

3.2. The development option

We have tried, for fifty years now, with no notable success, to bring rationality
to software engineering. We have made progress alright, but so have user demands.
All of our productivity increases and methodology improvements have just barely kept
pace with the ever-increasing complexity of the software we produce. When you
couple that with justified but continually rising user dependability expectations and
the increasingly lower technical level of our users (also expected), we have been, and
continue to fall behind. At some point we must ask if the old way is the right way. Can
we realistically expect Nakamura to come out with the theorem that solves everything
or Smith with the tool the fixes everything up? I think not.

The bright light in the history of software engineering has been the recognition
that we must forego the fully generalized potential of software and adopt design re-
strictions that makes it possible for us to understand our software. We have done it in
the past; here are a few such restrictions:

1. Structured programming.

2. Strong typing and user defined semantic types.

3. Avoidance of global data.

4. Adoption of style rules and use of style checkers.

5. Encapsulation.

Each of the above are restrictions on the way software is written. Each exacts
a toll in terms of execution time, program space, and most important of all, personal
ego. We can probably add ten more to the above list of restrictions that are acceptable
today. It is not whether this is the right list or the ultimate list, but that such a list
exists and that programmers are willing to back down from the total freedom (actually,
chaos) of four and five decades ago. The list will expand, of course, but will this do
the job? No! Because a list of pragmatic design restrictions avoids the questions of
deriving design principles from fundamentals (e.g., axiomatically). There has been no



B. Beizer / Software is different 309

active search for the right design restrictions. People, programmers and researchers,
have been saying “If we adopt design restriction X, then there will be fewer bugs.”
That is doing it backwards. The question should be “What are the design restrictions
we need to make software constructable, testable, and safe?”

3.3. Do paradigm checks

When communications seems to be stalled and you are talking at cross-purposes
in a crossed transaction, run down a checklist of paradigms. Ask “Are you assuming”:

1. That software is easy to change?

2. Bug space locality?

3. Bug time locality?

4. Proportionality between bug and consequences?

5. Bug independence?

6. Proportional complexity growth?

7. Safety limit knowledge?

8. Composability?

9. Decomposability?

10. Agreed quality measures?

11. Quantifiability?

12. Knowledgeability?

If you are yourself assuming such things, then you should quickly come to terms
with software reality. Until your own basic assumptions change, you are unlikely to
change anyone else’s.

3.4. Restructure priorities

The software development priority list that has dominated the industry from the
beginning is:

1. Develop it as fast as possible.

2. Make it run as fast as possible.

3. Build it as tight as possible.

4. Put in as many features as you can.

5. Do it at the lowest possible cost.

6. Worry later. Bugs will get fixed.



310 B. Beizer / Software is different

These priorities do not even make my list. Here is an alternative set of priorities
more in keeping with what we can and cannot do in software development. While one
might argue that these new priorities apply only to life-critical software, I argue that
they should take priority for all software because together, they are only a more formal
way of saying “do we know what we are doing?” And we should be able to honestly
say that we know what we are doing before we concern ourselves with development
time, performance, size, and cost.

1. Can it be analyzed? Is its behavior predictable?

2. Can it be tested?

3. Does it have a composable model?

4. Does it work?

5. Have feature, component, and data interactions been reduced to the absolute mini-
mum?

6. Does it have the features the users need (as contrasted to want)?

3.5. Public honesty about our ignorance

Speaking from the perspective of a member of the software industry, I say that
we are a profoundly dishonest bunch. We software types lie to ourselves about what
we can and cannot do, we lie to our managers about how long it will take to do it,
they tell the marketeers that the delivery schedule (which was more the product of
martinis than rational thought) they want is what they will get. Among ourselves we
may hint that we do not know how to make something work, but we will reassure the
public that it will work (somehow? somewhere? somewhen?) If users have unrealistic
expectations then we are to blame. And therefore, it is up to us to educate them so
that their expectations are aligned with our current abilities instead of our aspirations.

References

Bauer, R., Unpublished, privately circulated research results that claim to prove that no set of software
metrics axioms can be consistent with measure theory.

Berne, E. (1964), Games People Play, Grove Press, New York.
Faught, D. (1996), Quote in Email signature attributed to Ted Nelson.
Ferm, V. (1945), An Encyclopedia of Religion, Philosophical Library, New York.
Gilb, T. (1995), Private correspondence.


