
* Conventional

reliability theory

woyksfine - ifits

assumptions hold.

But fo y softwa ye,

they fail. A new

theory of

trustworthiness is

needed.

Are We
Testing for
T rue
Reliability?
DICKHAMLET, PO&~ State University

S oftware engineers are less
eager to accept reliability modeling than
engineers in other disciplines. Instead,
they propose clever methods for develop-
ing “defect-free” programs or for testing
to eliminate all defects. These methods,
although valuable and necessary, are es-
sentially unrelated to reliability

Reliability is the statistical study of fail-
ures, which occur because of some defect
in the program. The failure is evident, but
you don’t know what mistake is responsi-
ble or what you can do to make the failure
disappear. Reliabililty models are sup-
posed to tell you what confidence you can
have in the program’s correcmess.

But conventional reliability theory
- which is taken from the reliability
engineering of physical objects-is not
satisfactory. It works only when a simi-
lar set of operational assumptions hold.
It is not tailored for software’s quirks.
Thus, it rarely provides developers with

confidence that they can rely on their
software.

TWO KINDS OF MODELS 1~

To understand what a reliability ~’
model demands, you must first under- ~
stand that there are two kinds. Reliability-
growth models are applied during de- ~
bugging. They model repeated testing, ’
failure, and correction. Managers can ~~
use them to predict when the mean time
to failure is large enough to release the

~1
~

software.
Reliability models, in contrast, are ap- ~

plied after debugging, when the program ~
has been tested, and no failures have been il
observed. The reliability model predicts ~:
the MTTF you can expect.

At iirst glance, the reliability model
appears to be just a limiting case of there- ~
liability-growth model in which zero fail-
m-es are observed. However, these models

~~
I’

IEEE SOFTWARE 07407459/92/0700/0021/$03 00 0 IEEE 21

tliffet- qualitatively. Because reliability-
growth motlels are used during debug-
ying, as you observe failures, the-observa-
tions give YOU direct, nonstatistical
teedback 01; the model’s performance:
‘I-he AI’ITI you calculate from the model
should be routrhlvthe M’ITFvou act&v i
obseme, which for most of the debugging
period will be short, sav 100 runs. Further-
more, since the reliability-growth model is
designed to tell simply when the software’s
operational quality is at an acceptable
level, prediction accuracy can be less than
perfect.

The predictions of a reliability model,
on the other hand, are purelv statistical.
Because you do not observe failures, there
is nothing to check the predicted MTTF
against. Moreover, the M’ITF is much
larger than any observation data you can
obtain, sav 100,000 runs. For safety-crid-
cal software, the required M’ITF mav be

I i

orders oFmaLgnitude higher. For these sys-

tems, the calculated MTTF must be pre-
cise, because it fulfills a contractual obliga-
tion or is related to an inflexible require-
ment like protecting human lives.

Thus, much more is demanded of a
reliability model than a reliability-growth
model. And for that reason, you should be
careful in accepting the results of a reliabil-
ity model at face value. These are the
models I am concerned with in this article.
I want to show that if testing has shown
zero failures for enough samples that a
model predicts an acceptable M’ITF, you
can’t always trust that model.

WHY CONVENTIONAL RELIABILITY
THEORY FAILS

Software reliability is usually modeled
by analogy to physical reliability - the
engineering of reliability for objects.
Physical reliability is concerned with col-
lections (often of apparently identical me-

chanical parts), whose members differ
slightly because of random (as opposed to
systematic) fluctuations - such things as
manufacturing, operating environment,
and durability. The collection is tested,
and the destruction times of members are
noted; physical reliability theory is con-
cerned with calculating the MTTE

In the software analogy, a single pro-
gram is given different inputs to form the
collection. A failure rate 8 is postulated for
each program P as the probability that P
will fail on an arbitrary input. Inputs are
assumed to be drawn from an operational
profile that may weight some more heavily
than others, reflecting the actual usage ex-
pected of P. Then the statistical theory
relates 8 to the number of tests N con-
ducted without failure. TheMTTFis l/8,
as derived in Martin Shooman’s text.’ If
the theory holds, the calculated MTTF
will predict observed behavior when in-

1 puts come from the operational profile.

TWO DEWELOPMENT MYTHS: DEFECFFREE SOFTWARE AND TESTIWG AWAY FAILURES
Some developers seek to

avoid testing altogether, claim-
ing that they can develop de-
fect-free software using formal
methods. The argument is that
software MS only because dis-
crete mistakes were made in de-
veloping it. That is, each applica-
tion has a perfect program - a
program that cannot fail. These
developers believe that they can
create defect&e software.

Other developers acknowl-
edge that perfect programs can-
not always be created, but they
still hope to remove all defects
through testing.

Both these approaches have
serious flaws.

DdMth~sohwcre.Ontbe
surface, the idea of defect-free
s&ware seems logical; there is
no physical medium in software,
as there is in other types of devel-
opment; to wear out, become

flawed during manufacturing, addressed by improving the de- used to create it The &agile na-
and so on. Of course, the com- velopment method, part&My ture of languages and of digital
puterexecutingaprogramisa by using formal methods, computation itself feed the
physical object, and a physical whkh users do not see or un- maintenance problem Pro-
medium transmits the program derstand. grams and dxir behavior lack
tex&butdlesefiluKnsarehivial + Cmnplexprddem. The so- any kind ofcomiuuity. Avery
sources of failure compared ltttion to a complex problem srn&changetoaprogmmcau
with progmrn-design mistakes. isn’t ahays simple, and the baveaverylargeefkctonits

Developers, there&e, are problem may be arbitrarily bebavioq behavior can be arbi-
tempted to attack failure at its complex. Computer systems muily ditlkat on input that is
source But attempts m comtmct are designed to be general pur- arbitrarily&Thereare
perkctsofbvarearedoomedto pose, so more and more com- programs~reveryproblem
failforseveralreasons: pIex problem solutions wiH al- witbout this discoritinuous be-

* Intuitiveprablemr, The ways be attempted, eventually havioq but no one knows how
problems the software is sup- outstripping the control of any tostickmtbatsetofprograms,
posed to solve are itrprkdy method. particularly durmgmodification.
understood by those who need Tbe Strategic Deknse Ini- But that these problems
the solutions. Users communi- Give shows that sane develop- make defect-&ee s&ware irn-
cate this impedect understand- erswil.lalwaysbewillingtoat- possible is no reason to aban-
mg, imperfectly, to profession- tempt problems admowledged don attempts to improve so&
als who devise the solutions, to be beyond the state ofthe art ware devfkpnent or use
who in turn imperfectly com- + Shjsbodmu~. fkmalmetbods.Onthecon-
municate the solution’s charac- Once a computer system &sts, Wary, the fkure will see more
teristics. there is an irresistible pressure &malmethodsbecausethey

Inevitably, the wrong prob to modify it, and unhappily to are cost-efktive. However,
lem is solved -a d.i&ulty not do so with less care than was more formal development can-

22 JULY 1992

The chance that a single test will fail is
8, or 1 - 8 that it will succeed. Thus the
probability that N independent tests will
all succeed is (1 - fl)“~ The largest value of
8 such that (lXQV > cx defines the 1 - CI
upper confidence bound on 8 - that is,
the probability that this value exceeds the
correct value for P.

Solving for 8, testing with N indepen-
dent points from the operational profile
gives 1 - a confidence that the failure rate
is below 8, if 0 = 1 -a’LV. For example, one
million test points gives 99 percent confi-
dence that the failure rate is below 4.6 x
lOA, an MTTF of about 220,000 runs.

Unfortunately, this conventional reli-
ability theory is flawed in a number of
ways.

Random variables differ. Some software,
like a telephone switch, is intended to op-
erate continually, so starting it and waiting
for failure is analogous to starting a de-

structive test of a physical object. The ran-
dom variable is execution time, so you can
form a collection of objects using a single
program by giving it different inputs,
weighted according to its operational pro-
file.

However, most programs operate ei-
ther in a batch mode, in which thev are
given input then compute and terminate,
or in an interactive mode, in which they
may be in operation for a long time but
spend most of it awaiting human input.

For batch and interactive programs,
run count replaces time as the random
variable. That is, the MTTF is measured
in executions, or number oftests tried. For
a batch program, a run is a complete exe-
cution; for an interactive program, it is a
single I/O interchange.

Proyam nms aren’t always independent. TO

satisfy the analogy to mechanical parts,
program runs must be independent of one

another. Otherwise, in the mechanical
analogy, the parts being tested would in-
fluence one another (the failure of one
would depend on the others), fundamen-
tally contravening the statistical theov.

When programs accumulate state in-
fonnation over their runs, they are explic-
itly compromising run independence. For
example, an interactive program can, as a
side-effect of responding to an ill-formed
comnrand, go into a state in which most
subsequent commands fail. Those subse-
quent runs are statistically meaningless.
Dave Pamas cleverly notes that it would
be a good idea for safety-critical prognams
to reinitialize themselves whenever possi-
ble to improve the accuracy of reliability
theory by avoiding state build-up.’

Physical systems fail because defects
appear during their use. Design defects
are not unknown in established fields such
as civil engineering. For example, in the
walkway collapse at the Kansas City

not guarantee reliability, which
must be independently as-
sessed at the end of any
human activity, to catch inevi-
table mistakes.

T@%lpMmyfdwes.Again,
on the surface, testing away all
defects seems possible. Each
program’s code is finite and
hence must have only a fixed,
finite number of defects. But
even clever testing methods are
doomed to fail.

Practical systematic testing
is a game of coverage. The tes-
ter tries to make sure that all
the elements of the program or
specification have been tried. In
partition testing, you divide, or
partition, the input space into
classes that characterize the ele-
ments to be covered and create
test sets by selecting points
from each class.

The hope is that the input

classes will be homogeneous-
any point selected iiom each
classwillbe representative-and
that cleverly defined classes
will uncover all failures. Parti-
tioning may be based on pro-
gram strum, as in clear-box
methods (named for electronic
components in boxes that
allow the interior to be exam-
ined), or on the specification,
as in black-box methods,
which do not use the code.

In structural testing, pro-
gram elements are exercised.
certainly if some part has not
been tried at all, you can have
no confidence in its quality.
The best known structural test
method is statement testing, in
which tests force the execution
of each statement. Statement
testing is part of a control-flow
hierarchy of methods, includ-
ing branch testing (tests must
force each branch to be taken

both ways), a variety of
datatlow methods (tests must
cover paths defined by certain
definition/use relationships
among variables), and full-path
testing (tests must force execu-
tion of all paths). Path testing
has many variants, in which
loops need not be executed for
each of the infinite ways gener-
ally possible. These variants are
usuallyviewed as the most strin-
gent of the practical structura.i
methods.

Au the finite, path-based,
structural methods are straight-
forward and relatively inexpen-
sive to implement, and a variety
ofresearch and commercial tools
have been created for them.

In contrast to control-flow
methods, mutation testing is
probably the least known struc-
tural method. Small individual
changes are introduced in the
program under test (the most

interesting ones occur in ex-
pressions), and test setS must
distinguish the mutant pro-
gram from the original. Muta-
non testing is often surprisingly
difficult because it is hard to
think through the extensive
bookkeeping required.

The only implementation
of mutation testing is the brute-
fbrce creation and execution of
a vast collection of mutants,
which is expensive and slow.
So-called “weak mutation” -
in whichthe mutation’s effect is
detected in the state immedi-
ately following-is better in
this regard, but still not ac-
cepted.

In black-box testing, the
specification supplies the organ-
izing information for system-
atic testing. What is often
called functional testing isolates
a collection of actions (func-
tions) a program should per-

IEEE SOFTWARE 23

Hyatt-Regency. hotel, construction could
not handle the weight of a crowd, and the
structure simply waited for its first crowd,
then collapsed. However, reliability the-
ory is not applied to such mechanical situ-
ations - the objects are one-of-a-kind.
Only computer programs have the wealth
of design defects that might support a sta-
tistical approach.

For a statistical theory, variations must
be independent. 15hen one test system
fails, it must not imply anything about the
failure of others. Programs fail only be-
cause of design defects lying in wait for the
input that excites them. Test systems differ
only in the input each is given. Hence,
these inputs must not be correlated. That
is, the failure or success of one input can-
not force the same behavior for another.
Correlated inputs are analogous to cheat-
ing on the testing effort by copying one
data point several times. If that point is a
failure, the reliability will appear worse

than it really is; if not, the reliability will
appear to be better. In program-release
testing, the result is always overly optimis-
tic. Because a release test by definition
does not fail, if it contains correlated
points, the calculated reliability is too
high.

There may be no operatiomd profile. For a
telephone switch, you can determine the
operational profile empirically from past
data, or model the load analytically and
derive data from the model. Such a distri-
budon is accurate and appropriate. How-
ever, most programs’ profiles are not
known. What is more in doubt is the valid-
ity of any operational profile for a piece of
system software. The software may handle
an immense number of possibilities,
whose frequency and sequence depend on
human vagaries. Each execution is more a
unique special case than a sample drawn
from some distribution. Again, an inap-

propriate distribution can only wor
against calculated reliability, becaus
nothing is gained by testing in region
weighted too heavily, but improperly ne
glected regions give a false security th:
the software does not in fact support. Thu
conventional theory will give overly opti
mistic results.

There is no appropriate failure mte. A corn
mon assumption in software developmer
is that the instantaneous rate of failure -
the hazard rate - is constant. For prc
grams that are more likely to fail the long6
they run, a model might use a time- c
run-increasing hazard rate, as in mecham
cal systems that wear out. (The analog
would be not that the program wears ou
but that it accumulates state that increase
its likelihood of improper behavior.) Sue
a model, however extreme for softwan
gives nearly the same results as for a con
stant hazard.

form, and requires test data to
exercise each function. You can
further refine the test sets by in-
cluding parameters that modify
functional behavior, or by re-
quiring that sequences of func-
tions be tested.

Functional testing directly
tries what is expected of the
software. You can plan tests as
soon as you have the specifica-
tion, which is a plus. Functional
testing also protects developers
against the embarrassment of a
program that doesn’t work at
all because of an oversight or
misunderstanding about some
feature.

~Y~f~~~~~
Partition testing has great intu-
itive appeal, but it is not a pana-
cea. As an absolute method, it is
flawed because partition tests
can be misleading. For most
programs and most testing
methods, an infinite number of

test sets will satisfy the method. increasing order. Ifs, contains an acceptance test of an early
The tester therefore will find it a complex formula involving Digital Equipment Corp. PDP-
difficult to apply partition test- the matrix elements, the tests 10 operating system did include
ingsystematicauy. devised for (say) branch testing such a write-write sequence be-

For example, suppose test arenotlikelytoreachitwith cause record numbers were
set TMis selected, itsatisfies a nontrivial matrix elements - it generated at random. The test
systematic method, and for TM is too difficutt to find data just failed but was ignored. Testers
the tested program does not to reach 5’, Hence if S,‘s for- &sawered Iaber that by exciting
fail. However, if among the in- mula is correct for trivial eIe- this bug, a user program could
ihite number of other test sets rnents only, most branch-ade- gainunrestrictedaccesstoany
that also satisfy that metI14 quatete.stsetswiIlbe disk block by absolute address!
some (or perhaps many) would misleading. But no ‘reasonable” tester
cause the prugram to fail, then 9 F~~&~&Aprog.ratn would select a set with this se-
TMis misleading. can process read and write corn- quenee, so functional tests, of

Unfortunately, misleading mat& on random-access f&s dGssystematlf?a$willaImost
test sets are the rule rather nat-nedasacommandparame- always be misleading.
than the exception. The fol- ter. A functional test might
lowing examples for structural cover each c.ornm& some pa- h&e iur@ms Misleading
and functional methods are rameter possibil.ities for each, test sets confound most of the
common. and some command sequences. ways that have been devised to

6 S-d. A program has ButhowlikeIyistbetsetm almpare die effectiva~ of
several nested conditionals, include the sequence write- testing methods. For example,
such that to reach one of its write, in which two writes ad- the most common comparison
statements Se, the input must dress the same record? When uses an inclusion relation If a
be a singular matrix of rank thiscase&,theprogramcan test set for method 1 necessar-
greater than three, in which bethmwnintoastateinwhich ilysa&fiesmethod2,then 1 in-
one row has elements in stric+ everything goes wrong. In fact, chides (or subsumes) 2. In the

~___

24 JULY 199

k

e I
IS
m-
1t

IS

L- I

It /

-

,-

:r
ir
I-
yi
t, ;
:s ~
h
7
I-

-, i

II

I
I

2

Furthermore, a growing hazard rate
does not really capture failure arising from
state accumulation. First, state is not al-
ways harmful-it can be used to catch and
even correct program problems, and a sin-
gle program can alternately exhibit bene-
ficial and harmful aspects of state accumu-
lation as it runs. Second, tinkeringwith the
hazard rate does not address the issues of
sample independence, nor does it alter the
qualitative result that reliability does not
depend on program size.

Defects per line should be rougldy awtant.
Conventional theory fails to explain a pri-
mary observation about software systems:
the MTIF (in runs) in large systems is
roughly inversely proportional to pro-
gram size. That is, the number of defects
per line is roughly constant. This software
“law,” which is observed in practice, is
plausible when defects are human mis-
takes that arise because of the complexity

best-known inclusion relation
among methods, branch testing
strictly subsumes statement
testing. Intuitively, when
methodlsubsumes2,thereis
no point in using 2, because
methodlisalwaysatieastas
,~andmaybebetter.

MisIeading test sets flaw
this inclusion relation, how-
ever. The “better” method’s
test set can always be mislead-
ing, while the “worse”
method’s (different) test set is
not. Furthermore, these test
sets can be natural for the
methods, so the worse
method’s test set may actually
be the right choice for practi-
cal testing. ‘3% ikstrate, con-
sider the Pascal procedure:

function misled(x real): real;
begin

misled := q
if x > 0 then

misled := 1 .O/sqr(x)
end

Suppose you are trying to

of large programs. But conventional the-
ory predicts that the MTTF does not de-
pend on program size.

TOWARD TRUE RELIABILITY

Conventional reliability is deficient in
two significant ways: It relies on an opera-
tional distribution that may not exist, and
its assumptions about sample indepen-
dence do not hold. To correct these defi-
ciencies and find a better theory, we must
probe the correct sample space and exam-
ine the chance of program failure under
arbitrary circumstances. Unless we can
find a true reliability theory - a theory of
what Parnas calls trustworthiness, unlikely
to fail catastrophicall$ - developers are
building on sand. When they make gener-
alizations like “random system testing
should replace unit partition testing,” or
“inspections are better than testing,” they
may be setting themselves up for disaster.

Sampling basis. For any reliability theory
you must have a proper sampling basis tc
infer the probability of failure. Progran
input is not an appropriate sampling
choice because the statistical procedure:
work only when samples directly probt
the sources of failure. For programs, ran-
dom testing over the input space is only
tenuously connected to the design flaw!
that reside in the code. Input-space sam
pling also fails to predict the direct rela-
tionship between defects and progran-
size because program characteristics an
invisible.

The programming analogy to me
chanical reliability would be better if the
sample space were closer to the source 0
defects, the program text. If inspection!
were perfect at detecting failure, it woulc
make more sense to inspect a sample 0
code, and infer the quality of uninspectec
code, than to sample executions and infe:
the quality on unexecuted inputs. Inspec-

compute the reciprocal of the greater the danger of trivializ-
square root function, but if ing the test set to satisfy it, and
the input is not positive, you hence the more likely that it
wishmremrn itunchanged. will mislead.
Under the inclusion relation Obviously then, misleading
branch testing is the better test sets are the bane of any test-
method, and statement testing, ing method. Bill Howden at-
the worse. A natural statement tempted to capture their ab-
test set for an electrical engi- sencebycallingatesting
neer would be something like method reliable (not in the sta-
{2X for which the expeckd re- tistical sense of the word) for a
slllt is 0.707.... Any such test program if there are no mis-
will uncover a failure that re- leading test sets for that pro-
s& fkom mistaking the square gram that satisfy the method.1
function %.I? for the root Unfortunately, methods are sel-
Iimetion %qrLn dom reliable, and reliability is

However, ifyou are trying not in general a property of any
m attain branch coverage, you a@orithmic testing method.
are in danger of trying a mis- Furthermore, the restrictions
leadingtest&ike {-l,l}.The youmustp~~onprogr;rms
emphasii on branches focuses and methods to guarantee reli-
attention on the predicate ability are too stringent m
rather than on the computa- make them practical.*
tion. Th* the better method
isn’t better at ah. The more ~~~~~
elaborate the demands of a sys- Ross Taylor and I, repeating
tematic testing method, the the 1984 experiments ofJoe

Duran and Simeon Ntafos,
Ibund that random testing and

iar than you might think3
For that reason, you can ex-

pressanestimateofthequality
tbatcanbetestedintosoftware
witbpartitiontestingasan
i%lTTT Atypical unit partition
testmightcontain lOOpoints.If
all rzsucceed, and you assume the
test is random, there is 80 per-
cent contidence in anMTTF of
about 62 executions. This very
modestestimatehardlyjusti6es
theusualclaimthatshas
been tested and works.

REFERENCES
1. W Howden. “Reliabilitv of the

Path-Analysis Testing Saategy,”
EEIi Trm. So- Eng., Sept.
1976, pp. 208-215.

2. R Hamlet, “Reliability Theory of
Program Testing,” Acta Infirmutica,
1981,pp.31-43.

3. D. Hamlet and R. Taylor, “Pmi-
tion Testing Does Not Inspire Con-
fidence,“IEEE Trans. .S*m
Eng., Dec. 1990, pp. 1402-1411.

IEEE SOFTWARE 2t

rions arc hart1 to quantify and control, good approximation. Thus, I assume that
however, so a different kind of testing is
needed. one that samples the space of ac-

a computation’s data states contain only
variable values on which the result de-

rual defects. pends. Each computation starts with an

Sampling the state space. Both Pamas and
input, and may have an initial “correct”
state subsequence, then the first bad state

1 have proposed using the program’s state
space as the sampling domain for trust-

occurs, followed by a “failed” portion ot

worthiness,‘,’ but this is not a good practi-
the sequence. Thus, sampling the input

cal approach. The argument for using it is
space doesn’t work. Inputs that are appar-
ently independent can lead to the same

that failure results from textual flaws, or
taults, when particular circumstances arise

state and thus are not independent sam-
ples, relative to failure in that state.

at the control point that contains the fault
-which describes the state space exactly.
It is a tuple of internal-variable values and

Data fun-in/-out. The crux of appropri-

a value of the location counter. The sam-
ate state-space sampling is the idea of state

pling distribution should be uniform be-
collapse - when different computations
contain common sequences ofstates. State

cause failure is no more likely for one state
location than another. Such a theory cor-

collapse can occur through fan-in -when

rectly predicts that failure probability is
two paths in a program join or when the

proportional to program
values taken on by internal variables are

size.’
restricted.’ An example is

Unfortunately, the
an assignment statement

state spdce of most pro- Capturing the with a constant right side.
. . This statement produces

grams is far larger than the
input domain, so a theory

development process ;e;~;s;fa;;rmte;z;;
that requires sampling lets us expose likely tion, the assimed variable
this much space is not at-
tractive. sources of defects and

Larry Morel1 and Jeff test for them with
Voas suggest an altema-
tive.4 They argue that
points of the state space
are thelnselves correlated.

the possible values in
states expand. For exam-

Starting with an input, ple, an input statement is
each program normally goes through a se-
quence of states (its computation) to reach
an output. The computation steps are de-
fined by the operational semantics of the
program statements as mappings from
state to state.

the ultimate fan-out: whatever restricted
values the input variable might have had
before the statement, after it, any value is
possible.

Hence, when some input leads to pro-
gram failure, the entire computation has
“failed,” so sampling states from that se-
quence overemphasizes failure. States
fToni a single correct sequence are corre-
lated in a similar way. To add to the confu-
sion, the same state may appear in both
failed and correct computations.

Many program statements do not fan
in or out. For example, an assignment
statement using an arithmetic operator
like + has as many state value possibilities
after execution as it did before.

You don’t have to sample variable val-
ues in a state if the final result does not
depend on them. Although the problem to
determine such dependencies is generally
unsolvable, dataflow techniques give a

When programs have a good deal of
fan-in, their possible data states collapse to
a set that can be smaller than the input
domain. Many inputs lead to exactly the
same computation, and intuitively it is the
computations that should be sampled in
testing. When programs have a good deal
of fan-out, there is a combinatorial explo-
sion of the state space because coverage of
early states does not imply coverage of

single value.
Fan-out occurs when

later states with a wider value range.
When programs neither fan out or in,
each input leads to a different computa-
tion, and appropriate state-space sampling
is the same as input sampling. However,
the appropriate distribution is uniform,
not the operational profile.

Thus, in some cases, far fewer test
points are needed to establish trustworthi-
ness than are needed to satisfy conven-
tional reliability. In other cases, the two
require about the same number of points,
but with different test distributions; And
in still other cases, trustworthiness can re-
quire vastly more points than reliability,
with the full exploration of each state as an
upper bound.

Interestingly, computation diversity
and fan-out occur when programs read
input throughout a computation rather
than just at the beginning. Intuitively, such
programs are interactive, and make essen-
tial use of saved state. The ultimate patho-
logical case is that of real-time programs,
in which inputs and state expansion appear
at any point in the computation because an
interrupt occurs.

HOW SHOULD WE TEST?

Although testing certainly has its limi-
tations, it is unwise to discard it as a useful
part of software development. The devel-
opment process is beginning to be studied
and controlled. Capturing the process
provides the opportunity to expose likely
sources of defects, and to test for them
with appropriate partitions. Conventional
random testing also has its merits.

Partition testing. The box on pp. 22-25
describes the weaknesses of partition test-
ing to dispel the idea that a successful test
means the software is reliable. But I would
never recommend that you abandon par-
tition testing altogether - and particu-
larly not in favor of system-reliability test-
ing.

Partition testing is the developer’s best
tool to probe the software for specific de-
fects. Of particular importance are defects
that lead to failures with catastrophic con-
sequences. However infrequent a cata-
strophic failure may be, it is worth expend-

JULY 1992

ing effort to preclude it, and a partition
devised by considering the failure possibil-
ities (for example, using a safety fault tree6)
is just the way to attack the problem. In-
deed, you should use partition testing
whenever you suspect a particular source
of defects, with a partition emphasizing
the defect-prone input. Testing in that
partition gives little confidence in overall
reliability, but it is the only means of gain-
ing confidence that the particular problem
will not arise.

For example, a module that undergoes
a specification change late in develop-
ment, or one that fails an inspection, is an
obvious potential defect source. Not only
should you heavily exercise its structural
and functional unit-test partitions, but
when it is integrated into a system, the
whole should be tested with a partition
that singles out module execution.

Partition testing has many advantages.
A functional partition test can be designed
beginning in the requirements stage of de-
velopment. Test data for sa~ctural parti-
tions can be automatically generated, and
even if hand generated, the tester has a
systematic goal and automatic support.

If you have a complex piece of software,
whose usage patterns you do not know,
and you have a vast nonnumeric input do-
main, partition testing is probably your
only choice.

Randam testing. Preliminary results
(based on a somewhat doubtful model that
uses failures “tagged” by their origin7) in-
dicate that uniform-distribution, state-
space testing should be much better than
partition testing at establishing confidence
in apparently defect-free software.

However, random testing is not practi-
cal because it requires many orders of
magnitude more test points than current
practice. Even if you have an oracle -
some means of mechanically deciding if
program results are correct - random
testing is barely feasible. Without an ora-
cle, it is not feasible at all in most cases.

But random testing is the theoretical
model that can answer fundamental ques-
tions that have too long been ignored. If,
in fact, testing for a reasonable reliability is
impractical by any means, then testing is

merely a defect-detection method that
may not stack up well against others like
inspections, and we should be changing
our quality-assurance methods accord-
ingly. On the other hand, if we can find a
small state space to sample, we can make
even trustworthiness practical.

Measuring the state-space coverage a
test gives is not impractical. Well-known
program-instrumentation techniques can
record test penetration and statisticallyan-
alyze the results. If the state-space theory
is correct, such measurements can pin-
point states that have been poorly tested,
and leave the difficult problem of how to
reach them to the tester.

Voas has given the problem a novel
twist with practical promise. He directly
probes the state space by perturbing a
state, then monitoring whether the per-
turbation affects program results. If not,
that state (or the corresponding statement
of the program) is not very Usensitive,n
since even if the data state were incorrect
(as arranged by the perturbation) the re-
sults are correct. The lesson for program-
mers is that faults in insensitive statements
will be hard to detect by testing. Perhaps
the cleverest part of Voas’s idea is that he
need not consider the input space, so he
doesn’t have to reach the data states he
perturbs or consider the operational pro-
file.

T” e main points I have tried to make in
this article are

+ In testing for true reliability, clever
partition methods may be no better than
random testing, and if they are not, then
no practical testing technique exists for
guaranteeing software quality.

+ The analogy to mechanical reliabil-
ity is a poor one for software.

+ More research is needed on trust-
worthiness; it may be that the state explo-
sion is not so important as it seems. Corre-
lated states are grouped into program
computations, which may be the appro-
priate entities to sample.

+ It may be possible to statically char-
acterize programs for which the combina-
torics of testing is not forbidding, giving
precision to the desirable quality of “test-
ability.” Testability is also dynamically de-

scribed by Voas’s idea of sensitivity. Ex
periments are needed to determine i
these theoretically appealing ideas are ii
fact related to testing difficulty.

Iftesting for quality is the goal, then w
must find a solution to the oracle problen
Until random tests of a million points be
come practical, testing is only a poor corn
petitor for other heuristic defect-detec
tion methods. 4

ACKNOWLEDGMENTS
This work was supported by National Science

Foundationgrant CCR-9110111.

REFERENCES
1. M. Shooman, Sofrware Engineering Design, Re-

liability, and Managemat, McGraw-Hill, New
York, 1983.

2. D. Pamas, A van Schouwen, and S. Kwan,
“Evaluation of Safety-Critical Software,”
Cmm. ACM, Sept. 1990, pp. 638.648.

3. R. Hamlet, “Probable Correcmess Theory,”
Infbrmutim Pnwsing Letten, June 1987, pp.
17-25.

4. L. Morel1 and J. Voas, “Inadequacies of Date
State Space Sampling as a Measure ofTrust-
worthiness,” Software Eng. Notes, Apr. 1991,
pp. 73-74.

5. J. Voas, “Preliminary Observations on Pro-
gram Testability,” Pm. Paa@ Nortbwert Qual-
ity Cof, PNQC, Portland, 1991, pp. 235-247.

6. N. Leveson and P. Harvey, “Analyzing Soft-
ware Safety,- lEEE Tram. sofrware Eng., Sept.
1983, pp. 569-579.

7. D. Hamlet and R. Taylor, “Partition Testing
Does Not Inspire Confidence,” IEEE Tram.
SofrwaeEng., Dec. 1990,~~. 1402-1411.

Dick Hamlet is a professor
of computer science at Pan
land State University,
where he is investigatig
the theoretical foundations
of testing. He is the author
of two textbooks and about
40 refereed conference and
journal articles.

Hamlet received a Phi
in computer science from the University ofWashing

Address qusdom ahout this micle to Hamlet at
Portland State University, CS Dept, Center for S&war
Quality Research, PO Box 75 1, Portland, OR 97207;
Internet hamlet&s.pdx.edu.

b

IEEE SOFTWARE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

