
* Conventional 

reliability theory 

woyksfine - ifits 
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But fo y softwa ye, 

they fail. A new 

theory of 

trustworthiness is 

needed. 

Are We 
Testing for 
T rue 
Reliability? 
DICKHAMLET, PO&~ State University 

S oftware engineers are less 
eager to accept reliability modeling than 
engineers in other disciplines. Instead, 
they propose clever methods for develop- 
ing “defect-free” programs or for testing 
to eliminate all defects. These methods, 
although valuable and necessary, are es- 
sentially unrelated to reliability 

Reliability is the statistical study of fail- 
ures, which occur because of some defect 
in the program. The failure is evident, but 
you don’t know what mistake is responsi- 
ble or what you can do to make the failure 
disappear. Reliabililty models are sup- 
posed to tell you what confidence you can 
have in the program’s correcmess. 

But conventional reliability theory 
- which is taken from the reliability 
engineering of physical objects-is not 
satisfactory. It works only when a simi- 
lar set of operational assumptions hold. 
It is not tailored for software’s quirks. 
Thus, it rarely provides developers with 

confidence that they can rely on their 
software. 

TWO KINDS OF MODELS 1~ 

To understand what a reliability ~’ 
model demands, you must first under- ~ 
stand that there are two kinds. Reliability- 
growth models are applied during de- ~ 
bugging. They model repeated testing, ’ 
failure, and correction. Managers can ~~ 
use them to predict when the mean time 
to failure is large enough to release the 

~1 
~ 

software. 
Reliability models, in contrast, are ap- ~ 

plied after debugging, when the program ~ 
has been tested, and no failures have been il 
observed. The reliability model predicts ~: 
the MTTF you can expect. 

At iirst glance, the reliability model 
appears to be just a limiting case of there- ~ 
liability-growth model in which zero fail- 
m-es are observed. However, these models 

~~ 
I’ 
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tliffet- qualitatively. Because reliability- 
growth motlels are used during debug- 
ying, as you observe failures, the-observa- 
tions give YOU direct, nonstatistical 
teedback 01; the model’s performance: 
‘I-he AI’ITI you calculate from the model 
should be routrhlvthe M’ITFvou act&v i 
obseme, which for most of the debugging 
period will be short, sav 100 runs. Further- 
more, since the reliability-growth model is 
designed to tell simply when the software’s 
operational quality is at an acceptable 
level, prediction accuracy can be less than 
perfect. 

The predictions of a reliability model, 
on the other hand, are purelv statistical. 
Because you do not observe failures, there 
is nothing to check the predicted MTTF 
against. Moreover, the M’ITF is much 
larger than any observation data you can 
obtain, sav 100,000 runs. For safety-crid- 
cal software, the required M’ITF mav be 

I i  

orders oFmaLgnitude higher. For these sys- 

tems, the calculated MTTF must be pre- 
cise, because it fulfills a contractual obliga- 
tion or is related to an inflexible require- 
ment like protecting human lives. 

Thus, much more is demanded of a 
reliability model than a reliability-growth 
model. And for that reason, you should be 
careful in accepting the results of a reliabil- 
ity model at face value. These are the 
models I am concerned with in this article. 
I want to show that if testing has shown 
zero failures for enough samples that a 
model predicts an acceptable M’ITF, you 
can’t always trust that model. 

WHY CONVENTIONAL RELIABILITY 
THEORY FAILS 

Software reliability is usually modeled 
by analogy to physical reliability - the 
engineering of reliability for objects. 
Physical reliability is concerned with col- 
lections (often of apparently identical me- 

chanical parts), whose members differ 
slightly because of random (as opposed to 
systematic) fluctuations - such things as 
manufacturing, operating environment, 
and durability. The collection is tested, 
and the destruction times of members are 
noted; physical reliability theory is con- 
cerned with calculating the MTTE 

In the software analogy, a single pro- 
gram is given different inputs to form the 
collection. A failure rate 8 is postulated for 
each program P as the probability that P 
will fail on an arbitrary input. Inputs are 
assumed to be drawn from an operational 
profile that may weight some more heavily 
than others, reflecting the actual usage ex- 
pected of P. Then the statistical theory 
relates 8 to the number of tests N con- 
ducted without failure. TheMTTFis l/8, 
as derived in Martin Shooman’s text.’ If 
the theory holds, the calculated MTTF 
will predict observed behavior when in- 

1 puts come from the operational profile. 

TWO DEWELOPMENT MYTHS: DEFECFFREE SOFTWARE AND TESTIWG AWAY FAILURES 
Some developers seek to 

avoid testing altogether, claim- 
ing that they can develop de- 
fect-free software using formal 
methods. The argument is that 
software MS only because dis- 
crete mistakes were made in de- 
veloping it. That is, each applica- 
tion has a perfect program - a 
program that cannot fail. These 
developers believe that they can 
create defect&e software. 

Other developers acknowl- 
edge that perfect programs can- 
not always be created, but they 
still hope to remove all defects 
through testing. 

Both these approaches have 
serious flaws. 

DdMth~sohwcre.Ontbe 
surface, the idea of defect-free 
s&ware seems logical; there is 
no physical medium in software, 
as there is in other types of devel- 
opment; to wear out, become 

flawed during manufacturing, addressed by improving the de- used to create it The &agile na- 
and so on. Of course, the com- velopment method, part&My ture of languages and of digital 
puterexecutingaprogramisa by using formal methods, computation itself feed the 
physical object, and a physical whkh users do not see or un- maintenance problem Pro- 
medium transmits the program derstand. grams and dxir behavior lack 
tex&butdlesefiluKnsarehivial + Cmnplexprddem. The so- any kind ofcomiuuity. Avery 
sources of failure compared ltttion to a complex problem srn&changetoaprogmmcau 
with progmrn-design mistakes. isn’t ahays simple, and the baveaverylargeefkctonits 

Developers, there&e, are problem may be arbitrarily bebavioq behavior can be arbi- 
tempted to attack failure at its complex. Computer systems muily ditlkat on input that is 
source But attempts m comtmct are designed to be general pur- arbitrarily&Thereare 
perkctsofbvarearedoomedto pose, so more and more com- programs~reveryproblem 
failforseveralreasons: pIex problem solutions wiH al- witbout this discoritinuous be- 

* Intuitiveprablemr, The ways be attempted, eventually havioq but no one knows how 
problems the software is sup- outstripping the control of any tostickmtbatsetofprograms, 
posed to solve are itrprkdy method. particularly durmgmodification. 
understood by those who need Tbe Strategic Deknse Ini- But that these problems 
the solutions. Users communi- Give shows that sane develop- make defect-&ee s&ware irn- 
cate this impedect understand- erswil.lalwaysbewillingtoat- possible is no reason to aban- 
mg, imperfectly, to profession- tempt problems admowledged don attempts to improve so& 
als who devise the solutions, to be beyond the state ofthe art ware devfkpnent or use 
who in turn imperfectly com- + Shjsbodmu~. fkmalmetbods.Onthecon- 
municate the solution’s charac- Once a computer system &sts, Wary, the fkure will see more 
teristics. there is an irresistible pressure &malmethodsbecausethey 

Inevitably, the wrong prob to modify it, and unhappily to are cost-efktive. However, 
lem is solved -a d.i&ulty not do so with less care than was more formal development can- 
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The chance that a single test will fail is 
8, or 1 - 8 that it will succeed. Thus the 
probability that N independent tests will 
all succeed is (1 - fl)“~ The largest value of 
8 such that (lXQV > cx defines the 1 - CI 
upper confidence bound on 8 - that is, 
the probability that this value exceeds the 
correct value for P. 

Solving for 8, testing with N indepen- 
dent points from the operational profile 
gives 1 - a confidence that the failure rate 
is below 8, if 0 = 1 -a’LV. For example, one 
million test points gives 99 percent confi- 
dence that the failure rate is below 4.6 x 
lOA, an MTTF of about 220,000 runs. 

Unfortunately, this conventional reli- 
ability theory is flawed in a number of 
ways. 

Random variables differ. Some software, 
like a telephone switch, is intended to op- 
erate continually, so starting it and waiting 
for failure is analogous to starting a de- 

structive test of a physical object. The ran- 
dom variable is execution time, so you can 
form a collection of objects using a single 
program by giving it different inputs, 
weighted according to its operational pro- 
file. 

However, most programs operate ei- 
ther in a batch mode, in which thev are 
given input then compute and terminate, 
or in an interactive mode, in which they 
may be in operation for a long time but 
spend most of it awaiting human input. 

For batch and interactive programs, 
run count replaces time as the random 
variable. That is, the MTTF is measured 
in executions, or number oftests tried. For 
a batch program, a run is a complete exe- 
cution; for an interactive program, it is a 
single I/O interchange. 

Proyam nms aren’t always independent. TO 

satisfy the analogy to mechanical parts, 
program runs must be independent of one 

another. Otherwise, in the mechanical 
analogy, the parts being tested would in- 
fluence one another (the failure of one 
would depend on the others), fundamen- 
tally contravening the statistical theov. 

When programs accumulate state in- 
fonnation over their runs, they are explic- 
itly compromising run independence. For 
example, an interactive program can, as a 
side-effect of responding to an ill-formed 
comnrand, go into a state in which most 
subsequent commands fail. Those subse- 
quent runs are statistically meaningless. 
Dave Pamas cleverly notes that it would 
be a good idea for safety-critical prognams 
to reinitialize themselves whenever possi- 
ble to improve the accuracy of reliability 
theory by avoiding state build-up.’ 

Physical systems fail because defects 
appear during their use. Design defects 
are not unknown in established fields such 
as civil engineering. For example, in the 
walkway collapse at the Kansas City 

not guarantee reliability, which 
must be independently as- 
sessed at the end of any 
human activity, to catch inevi- 
table mistakes. 

T@%lpMmyfdwes.Again, 
on the surface, testing away all 
defects seems possible. Each 
program’s code is finite and 
hence must have only a fixed, 
finite number of defects. But 
even clever testing methods are 
doomed to fail. 

Practical systematic testing 
is a game of coverage. The tes- 
ter tries to make sure that all 
the elements of the program or 
specification have been tried. In 
partition testing, you divide, or 
partition, the input space into 
classes that characterize the ele- 
ments to be covered and create 
test sets by selecting points 
from each class. 

The hope is that the input 

classes will be homogeneous- 
any point selected iiom each 
classwillbe representative-and 
that cleverly defined classes 
will uncover all failures. Parti- 
tioning may be based on pro- 
gram strum, as in clear-box 
methods (named for electronic 
components in boxes that 
allow the interior to be exam- 
ined), or on the specification, 
as in black-box methods, 
which do not use the code. 

In structural testing, pro- 
gram elements are exercised. 
certainly if some part has not 
been tried at all, you can have 
no confidence in its quality. 
The best known structural test 
method is statement testing, in 
which tests force the execution 
of each statement. Statement 
testing is part of a control-flow 
hierarchy of methods, includ- 
ing branch testing (tests must 
force each branch to be taken 

both ways), a variety of 
datatlow methods (tests must 
cover paths defined by certain 
definition/use relationships 
among variables), and full-path 
testing (tests must force execu- 
tion of all paths). Path testing 
has many variants, in which 
loops need not be executed for 
each of the infinite ways gener- 
ally possible. These variants are 
usuallyviewed as the most strin- 
gent of the practical structura.i 
methods. 

Au the finite, path-based, 
structural methods are straight- 
forward and relatively inexpen- 
sive to implement, and a variety 
ofresearch and commercial tools 
have been created for them. 

In contrast to control-flow 
methods, mutation testing is 
probably the least known struc- 
tural method. Small individual 
changes are introduced in the 
program under test (the most 

interesting ones occur in ex- 
pressions), and test setS must 
distinguish the mutant pro- 
gram from the original. Muta- 
non testing is often surprisingly 
difficult because it is hard to 
think through the extensive 
bookkeeping required. 

The only implementation 
of mutation testing is the brute- 
fbrce creation and execution of 
a vast collection of mutants, 
which is expensive and slow. 
So-called “weak mutation” - 
in whichthe mutation’s effect is 
detected in the state immedi- 
ately following-is better in 
this regard, but still not ac- 
cepted. 

In black-box testing, the 
specification supplies the organ- 
izing information for system- 
atic testing. What is often 
called functional testing isolates 
a collection of actions (func- 
tions) a program should per- 
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Hyatt-Regency. hotel, construction could 
not handle the weight of a crowd, and the 
structure simply waited for its first crowd, 
then collapsed. However, reliability the- 
ory is not applied to such mechanical situ- 
ations - the objects are one-of-a-kind. 
Only computer programs have the wealth 
of design defects that might support a sta- 
tistical approach. 

For a statistical theory, variations must 
be independent. 15hen one test system 
fails, it must not imply anything about the 
failure of others. Programs fail only be- 
cause of design defects lying in wait for the 
input that excites them. Test systems differ 
only in the input each is given. Hence, 
these inputs must not be correlated. That 
is, the failure or success of one input can- 
not force the same behavior for another. 
Correlated inputs are analogous to cheat- 
ing on the testing effort by copying one 
data point several times. If that point is a 
failure, the reliability will appear worse 

than it really is; if not, the reliability will 
appear to be better. In program-release 
testing, the result is always overly optimis- 
tic. Because a release test by definition 
does not fail, if it contains correlated 
points, the calculated reliability is too 
high. 

There may be no operatiomd profile. For a 
telephone switch, you can determine the 
operational profile empirically from past 
data, or model the load analytically and 
derive data from the model. Such a distri- 
budon is accurate and appropriate. How- 
ever, most programs’ profiles are not 
known. What is more in doubt is the valid- 
ity of any operational profile for a piece of 
system software. The software may handle 
an immense number of possibilities, 
whose frequency and sequence depend on 
human vagaries. Each execution is more a 
unique special case than a sample drawn 
from some distribution. Again, an inap- 

propriate distribution can only wor 
against calculated reliability, becaus 
nothing is gained by testing in region 
weighted too heavily, but improperly ne 
glected regions give a false security th: 
the software does not in fact support. Thu 
conventional theory will give overly opti 
mistic results. 

There is no appropriate failure mte. A corn 
mon assumption in software developmer 
is that the instantaneous rate of failure - 
the hazard rate - is constant. For prc 
grams that are more likely to fail the long6 
they run, a model might use a time- c 
run-increasing hazard rate, as in mecham 
cal systems that wear out. (The analog 
would be not that the program wears ou 
but that it accumulates state that increase 
its likelihood of improper behavior.) Sue 
a model, however extreme for softwan 
gives nearly the same results as for a con 
stant hazard. 

form, and requires test data to 
exercise each function. You can 
further refine the test sets by in- 
cluding parameters that modify 
functional behavior, or by re- 
quiring that sequences of func- 
tions be tested. 

Functional testing directly 
tries what is expected of the 
software. You can plan tests as 
soon as you have the specifica- 
tion, which is a plus. Functional 
testing also protects developers 
against the embarrassment of a 
program that doesn’t work at 
all because of an oversight or 
misunderstanding about some 
feature. 

~Y~f~~~~~ 
Partition testing has great intu- 
itive appeal, but it is not a pana- 
cea. As an absolute method, it is 
flawed because partition tests 
can be misleading. For most 
programs and most testing 
methods, an infinite number of 

test sets will satisfy the method. increasing order. Ifs, contains an acceptance test of an early 
The tester therefore will find it a complex formula involving Digital Equipment Corp. PDP- 
difficult to apply partition test- the matrix elements, the tests 10 operating system did include 
ingsystematicauy. devised for (say) branch testing such a write-write sequence be- 

For example, suppose test arenotlikelytoreachitwith cause record numbers were 
set TMis selected, itsatisfies a nontrivial matrix elements - it generated at random. The test 
systematic method, and for TM is too difficutt to find data just failed but was ignored. Testers 
the tested program does not to reach 5’, Hence if S,‘s for- &sawered Iaber that by exciting 
fail. However, if among the in- mula is correct for trivial eIe- this bug, a user program could 
ihite number of other test sets rnents only, most branch-ade- gainunrestrictedaccesstoany 
that also satisfy that metI14 quatete.stsetswiIlbe disk block by absolute address! 
some (or perhaps many) would misleading. But no ‘reasonable” tester 
cause the prugram to fail, then 9 F~~&~&Aprog.ratn would select a set with this se- 
TMis misleading. can process read and write corn- quenee, so functional tests, of 

Unfortunately, misleading mat& on random-access f&s dGssystematlf?a$willaImost 
test sets are the rule rather nat-nedasacommandparame- always be misleading. 
than the exception. The fol- ter. A functional test might 
lowing examples for structural cover each c.ornm& some pa- h&e iur@ms Misleading 
and functional methods are rameter possibil.ities for each, test sets confound most of the 
common. and some command sequences. ways that have been devised to 

6 S-d. A program has ButhowlikeIyistbetsetm almpare die effectiva~ of 
several nested conditionals, include the sequence write- testing methods. For example, 
such that to reach one of its write, in which two writes ad- the most common comparison 
statements Se, the input must dress the same record? When uses an inclusion relation If a 
be a singular matrix of rank thiscase&,theprogramcan test set for method 1 necessar- 
greater than three, in which bethmwnintoastateinwhich ilysa&fiesmethod2,then 1 in- 
one row has elements in stric+ everything goes wrong. In fact, chides (or subsumes) 2. In the 

~___ 
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Furthermore, a growing hazard rate 
does not really capture failure arising from 
state accumulation. First, state is not al- 
ways harmful-it can be used to catch and 
even correct program problems, and a sin- 
gle program can alternately exhibit bene- 
ficial and harmful aspects of state accumu- 
lation as it runs. Second, tinkeringwith the 
hazard rate does not address the issues of 
sample independence, nor does it alter the 
qualitative result that reliability does not 
depend on program size. 

Defects per line should be rougldy awtant. 
Conventional theory fails to explain a pri- 
mary observation about software systems: 
the MTIF (in runs) in large systems is 
roughly inversely proportional to pro- 
gram size. That is, the number of defects 
per line is roughly constant. This software 
“law,” which is observed in practice, is 
plausible when defects are human mis- 
takes that arise because of the complexity 

best-known inclusion relation 
among methods, branch testing 
strictly subsumes statement 
testing. Intuitively, when 
methodlsubsumes2,thereis 
no point in using 2, because 
methodlisalwaysatieastas 
,~andmaybebetter. 

MisIeading test sets flaw 
this inclusion relation, how- 
ever. The “better” method’s 
test set can always be mislead- 
ing, while the “worse” 
method’s (different) test set is 
not. Furthermore, these test 
sets can be natural for the 
methods, so the worse 
method’s test set may actually 
be the right choice for practi- 
cal testing. ‘3% ikstrate, con- 
sider the Pascal procedure: 

function misled(x real): real; 
begin 

misled := q 
if x > 0 then 

misled := 1 .O/sqr(x) 
end 

Suppose you are trying to 

of large programs. But conventional the- 
ory predicts that the MTTF does not de- 
pend on program size. 

TOWARD TRUE RELIABILITY 

Conventional reliability is deficient in 
two significant ways: It relies on an opera- 
tional distribution that may not exist, and 
its assumptions about sample indepen- 
dence do not hold. To correct these defi- 
ciencies and find a better theory, we must 
probe the correct sample space and exam- 
ine the chance of program failure under 
arbitrary circumstances. Unless we can 
find a true reliability theory - a theory of 
what Parnas calls trustworthiness, unlikely 
to fail catastrophicall$ - developers are 
building on sand. When they make gener- 
alizations like “random system testing 
should replace unit partition testing,” or 
“inspections are better than testing,” they 
may be setting themselves up for disaster. 

Sampling basis. For any reliability theory 
you must have a proper sampling basis tc 
infer the probability of failure. Progran 
input is not an appropriate sampling 
choice because the statistical procedure: 
work only when samples directly probt 
the sources of failure. For programs, ran- 
dom testing over the input space is only 
tenuously connected to the design flaw! 
that reside in the code. Input-space sam 
pling also fails to predict the direct rela- 
tionship between defects and progran- 
size because program characteristics an 
invisible. 

The programming analogy to me 
chanical reliability would be better if the 
sample space were closer to the source 0 
defects, the program text. If inspection! 
were perfect at detecting failure, it woulc 
make more sense to inspect a sample 0 
code, and infer the quality of uninspectec 
code, than to sample executions and infe: 
the quality on unexecuted inputs. Inspec- 

compute the reciprocal of the greater the danger of trivializ- 
square root function, but if ing the test set to satisfy it, and 
the input is not positive, you hence the more likely that it 
wishmremrn itunchanged. will mislead. 
Under the inclusion relation Obviously then, misleading 
branch testing is the better test sets are the bane of any test- 
method, and statement testing, ing method. Bill Howden at- 
the worse. A natural statement tempted to capture their ab- 
test set for an electrical engi- sencebycallingatesting 
neer would be something like method reliable (not in the sta- 
{2X for which the expeckd re- tistical sense of the word) for a 
slllt is 0.707.... Any such test program if there are no mis- 
will uncover a failure that re- leading test sets for that pro- 
s& fkom mistaking the square gram that satisfy the method.1 
function %.I? for the root Unfortunately, methods are sel- 
Iimetion %qrLn dom reliable, and reliability is 

However, ifyou are trying not in general a property of any 
m attain branch coverage, you a@orithmic testing method. 
are in danger of trying a mis- Furthermore, the restrictions 
leadingtest&ike {-l,l}.The youmustp~~onprogr;rms 
emphasii on branches focuses and methods to guarantee reli- 
attention on the predicate ability are too stringent m 
rather than on the computa- make them practical.* 
tion. Th* the better method 
isn’t better at ah. The more ~~~~~ 
elaborate the demands of a sys- Ross Taylor and I, repeating 
tematic testing method, the the 1984 experiments ofJoe 

Duran and Simeon Ntafos, 
Ibund that random testing and 

iar than you might think3 
For that reason, you can ex- 

pressanestimateofthequality 
tbatcanbetestedintosoftware 
witbpartitiontestingasan 
i%lTTT Atypical unit partition 
testmightcontain lOOpoints.If 
all rzsucceed, and you assume the 
test is random, there is 80 per- 
cent contidence in anMTTF of 
about 62 executions. This very 
modestestimatehardlyjusti6es 
theusualclaimthatshas 
been tested and works. 
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rions arc hart1 to quantify and control, good approximation. Thus, I assume that 
however, so a different kind of testing is 
needed. one that samples the space of ac- 

a computation’s data states contain only 
variable values on which the result de- 

rual defects. pends. Each computation starts with an 

Sampling the state space. Both Pamas and 
input, and may have an initial “correct” 
state subsequence, then the first bad state 

1 have proposed using the program’s state 
space as the sampling domain for trust- 

occurs, followed by a “failed” portion ot 

worthiness,‘,’ but this is not a good practi- 
the sequence. Thus, sampling the input 

cal approach. The argument for using it is 
space doesn’t work. Inputs that are appar- 
ently independent can lead to the same 

that failure results from textual flaws, or 
taults, when particular circumstances arise 

state and thus are not independent sam- 
ples, relative to failure in that state. 

at the control point that contains the fault 
-which describes the state space exactly. 
It is a tuple of internal-variable values and 

Data fun-in/-out. The crux of appropri- 

a value of the location counter. The sam- 
ate state-space sampling is the idea of state 

pling distribution should be uniform be- 
collapse - when different computations 
contain common sequences ofstates. State 

cause failure is no more likely for one state 
location than another. Such a theory cor- 

collapse can occur through fan-in -when 

rectly predicts that failure probability is 
two paths in a program join or when the 

proportional to program 
values taken on by internal variables are 

size.’ 
restricted.’ An example is 

Unfortunately, the 
an assignment statement 

state spdce of most pro- Capturing the with a constant right side. 
. . This statement produces 

grams is far larger than the 
input domain, so a theory 

development process ;e;~;s;fa;;rmte;z;; 
that requires sampling lets us expose likely tion, the assimed variable 
this much space is not at- 
tractive. sources of defects and 

Larry Morel1 and Jeff test for them with 
Voas suggest an altema- 
tive.4 They argue that 
points of the state space 
are thelnselves correlated. 

the possible values in 
states expand. For exam- 

Starting with an input, ple, an input statement is 
each program normally goes through a se- 
quence of states (its computation) to reach 
an output. The computation steps are de- 
fined by the operational semantics of the 
program statements as mappings from 
state to state. 

the ultimate fan-out: whatever restricted 
values the input variable might have had 
before the statement, after it, any value is 
possible. 

Hence, when some input leads to pro- 
gram failure, the entire computation has 
“failed,” so sampling states from that se- 
quence overemphasizes failure. States 
fToni a single correct sequence are corre- 
lated in a similar way. To add to the confu- 
sion, the same state may appear in both 
failed and correct computations. 

Many program statements do not fan 
in or out. For example, an assignment 
statement using an arithmetic operator 
like + has as many state value possibilities 
after execution as it did before. 

You don’t have to sample variable val- 
ues in a state if the final result does not 
depend on them. Although the problem to 
determine such dependencies is generally 
unsolvable, dataflow techniques give a 

When programs have a good deal of 
fan-in, their possible data states collapse to 
a set that can be smaller than the input 
domain. Many inputs lead to exactly the 
same computation, and intuitively it is the 
computations that should be sampled in 
testing. When programs have a good deal 
of fan-out, there is a combinatorial explo- 
sion of the state space because coverage of 
early states does not imply coverage of 

single value. 
Fan-out occurs when 

later states with a wider value range. 
When programs neither fan out or in, 
each input leads to a different computa- 
tion, and appropriate state-space sampling 
is the same as input sampling. However, 
the appropriate distribution is uniform, 
not the operational profile. 

Thus, in some cases, far fewer test 
points are needed to establish trustworthi- 
ness than are needed to satisfy conven- 
tional reliability. In other cases, the two 
require about the same number of points, 
but with different test distributions; And 
in still other cases, trustworthiness can re- 
quire vastly more points than reliability, 
with the full exploration of each state as an 
upper bound. 

Interestingly, computation diversity 
and fan-out occur when programs read 
input throughout a computation rather 
than just at the beginning. Intuitively, such 
programs are interactive, and make essen- 
tial use of saved state. The ultimate patho- 
logical case is that of real-time programs, 
in which inputs and state expansion appear 
at any point in the computation because an 
interrupt occurs. 

HOW SHOULD WE TEST? 

Although testing certainly has its limi- 
tations, it is unwise to discard it as a useful 
part of software development. The devel- 
opment process is beginning to be studied 
and controlled. Capturing the process 
provides the opportunity to expose likely 
sources of defects, and to test for them 
with appropriate partitions. Conventional 
random testing also has its merits. 

Partition testing. The box on pp. 22-25 
describes the weaknesses of partition test- 
ing to dispel the idea that a successful test 
means the software is reliable. But I would 
never recommend that you abandon par- 
tition testing altogether - and particu- 
larly not in favor of system-reliability test- 
ing. 

Partition testing is the developer’s best 
tool to probe the software for specific de- 
fects. Of particular importance are defects 
that lead to failures with catastrophic con- 
sequences. However infrequent a cata- 
strophic failure may be, it is worth expend- 
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ing effort to preclude it, and a partition 
devised by considering the failure possibil- 
ities (for example, using a safety fault tree6) 
is just the way to attack the problem. In- 
deed, you should use partition testing 
whenever you suspect a particular source 
of defects, with a partition emphasizing 
the defect-prone input. Testing in that 
partition gives little confidence in overall 
reliability, but it is the only means of gain- 
ing confidence that the particular problem 
will not arise. 

For example, a module that undergoes 
a specification change late in develop- 
ment, or one that fails an inspection, is an 
obvious potential defect source. Not only 
should you heavily exercise its structural 
and functional unit-test partitions, but 
when it is integrated into a system, the 
whole should be tested with a partition 
that singles out module execution. 

Partition testing has many advantages. 
A functional partition test can be designed 
beginning in the requirements stage of de- 
velopment. Test data for sa~ctural parti- 
tions can be automatically generated, and 
even if hand generated, the tester has a 
systematic goal and automatic support. 

If you have a complex piece of software, 
whose usage patterns you do not know, 
and you have a vast nonnumeric input do- 
main, partition testing is probably your 
only choice. 

Randam testing. Preliminary results 
(based on a somewhat doubtful model that 
uses failures “tagged” by their origin7) in- 
dicate that uniform-distribution, state- 
space testing should be much better than 
partition testing at establishing confidence 
in apparently defect-free software. 

However, random testing is not practi- 
cal because it requires many orders of 
magnitude more test points than current 
practice. Even if you have an oracle - 
some means of mechanically deciding if 
program results are correct - random 
testing is barely feasible. Without an ora- 
cle, it is not feasible at all in most cases. 

But random testing is the theoretical 
model that can answer fundamental ques- 
tions that have too long been ignored. If, 
in fact, testing for a reasonable reliability is 
impractical by any means, then testing is 

merely a defect-detection method that 
may not stack up well against others like 
inspections, and we should be changing 
our quality-assurance methods accord- 
ingly. On the other hand, if we can find a 
small state space to sample, we can make 
even trustworthiness practical. 

Measuring the state-space coverage a 
test gives is not impractical. Well-known 
program-instrumentation techniques can 
record test penetration and statisticallyan- 
alyze the results. If the state-space theory 
is correct, such measurements can pin- 
point states that have been poorly tested, 
and leave the difficult problem of how to 
reach them to the tester. 

Voas has given the problem a novel 
twist with practical promise. He directly 
probes the state space by perturbing a 
state, then monitoring whether the per- 
turbation affects program results. If not, 
that state (or the corresponding statement 
of the program) is not very Usensitive,n 
since even if the data state were incorrect 
(as arranged by the perturbation) the re- 
sults are correct. The lesson for program- 
mers is that faults in insensitive statements 
will be hard to detect by testing. Perhaps 
the cleverest part of Voas’s idea is that he 
need not consider the input space, so he 
doesn’t have to reach the data states he 
perturbs or consider the operational pro- 
file. 

T” e main points I have tried to make in 
this article are 

+ In testing for true reliability, clever 
partition methods may be no better than 
random testing, and if they are not, then 
no practical testing technique exists for 
guaranteeing software quality. 

+ The analogy to mechanical reliabil- 
ity is a poor one for software. 

+ More research is needed on trust- 
worthiness; it may be that the state explo- 
sion is not so important as it seems. Corre- 
lated states are grouped into program 
computations, which may be the appro- 
priate entities to sample. 

+ It may be possible to statically char- 
acterize programs for which the combina- 
torics of testing is not forbidding, giving 
precision to the desirable quality of “test- 
ability.” Testability is also dynamically de- 

scribed by Voas’s idea of sensitivity. Ex 
periments are needed to determine i 
these theoretically appealing ideas are ii 
fact related to testing difficulty. 

Iftesting for quality is the goal, then w 
must find a solution to the oracle problen 
Until random tests of a million points be 
come practical, testing is only a poor corn 
petitor for other heuristic defect-detec 
tion methods. 4 
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