
CSC 308 Requirements Engineering

1

Requirements Techniques, cont.

• Formal requirements analysis techniques include:
– DFD (covered)
– ERD (covered)
– Finite State Machines
– Petri Nets



CSC 308 Requirements Engineering

2

Finite State Machines

• A requirements technique for modeling the states
and transitions of a software system

• Finite state machines are used in other contexts
– automata theory and compilers, for example

• More precise than data-flow diagrams
– data-flow diagrams specify only the nature of a system’s

data flow (e.g. the what and the where)
– finite state machines provide information on how a

system progresses from state to state
¤ what is “state”



CSC 308 Requirements Engineering

3

Formal Definition

• The definition of a finite state machine (FSM)
consists of five parts
– a set of states
– a set of inputs
– a transition function
– the initial state
– a set of final states



CSC 308 Requirements Engineering

4

Simple Example

• States of a combination lock for a safe
– Safe has a dial with three positions (1, 2, & 3)
– The dial can be turned in two possible directions

¤ At any point six possible motions
• Turn left to 1 (1L)
• Turn right to 1 (1R)
• etc...

– Combination is 1L, 3R, 2L
– The possible states include the safe being locked and

unlocked, sounding the alarm, and the steps along the
combination (e.g. 1L and 3R)



CSC 308 Requirements Engineering

5

Example, cont.

• Set of States (Locked, A, B, Unlocked, Alarm)
• Set of Inputs (1L, 1R, 2L, 2R, 3L, 3R)
• Transition Function (next two slides)
• Initial State (Locked)
• Final States (Unlocked, Alarm)



CSC 308 Requirements Engineering

6

Example, cont.

alarm

locked a b unlocked1L 3R 2L

X X X

any other input

initial state

final state

X



CSC 308 Requirements Engineering

7

Transition Table

Input

1L

1R

2L

2R

3L

3R

Locked

A

Alarm

Alarm

Alarm

Alarm

Alarm

A

Alarm

Alarm

Alarm

Alarm

Alarm

B

B

Alarm

Alarm

Alarm

Alarm

Alarm

Unlocked



CSC 308 Requirements Engineering

8

Finite State Machine Wrap-Up

• More advanced examples in other textbooks
– The infamous “Elevator Example” is a good one (Schach)

• Demonstrates
– The specification power of FSMs

• Typical Problem
– The number of states and transitions grows rapidly in

large systems
– Approach: decompose problem into smaller subsystems

• Tool support exists for this and related techniques
(e.g. statecharts)



CSC 308 Requirements Engineering

9

Petri Nets

• A formal technique suited for specifying the
properties of concurrent or multithreaded systems

• Typical concurrency problems
– race conditions

¤ X accesses Y before Z updates it
– deadlock

¤ X is waiting on Y which is waiting on X

• Petri nets can be used to help avoid ambiguity in
specifications that can lead to this class of problems
in multithreaded systems



CSC 308 Requirements Engineering

10

Formal Definition of Petri Nets

• A Petri net consists of four parts
– A set of places
– A set of transitions
– An input function
– An output function

• In the subsequent diagrams, the input and output
functions are represented by arrows



CSC 308 Requirements Engineering

11

Petri Net Parts

Place

Transition

Token



CSC 308 Requirements Engineering

12

Firing a transition

A transition fires when it
has a token at each input
place; as a result a token
is placed at each output
place.



CSC 308 Requirements Engineering

13

Simple Example

• A server cannot send an
event to a client until the
client has indicated that it is
ready to receive one

• Approach
– Map states into places
– Map events into transitions

• States
– Event waiting
– Event received
– Event processed
– Client Ready

• Events
– Generate Event
– Send Event
– Process Event
– Notify server



CSC 308 Requirements Engineering

14

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Three events; one being received



CSC 308 Requirements Engineering

15

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event gets generated



CSC 308 Requirements Engineering

16

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event gets processed; waiting event
must wait since “Send Event” cannot fire.



CSC 308 Requirements Engineering

17

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Another event gets generated



CSC 308 Requirements Engineering

18

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

The client notifies the server



CSC 308 Requirements Engineering

19

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event is sent...



CSC 308 Requirements Engineering

20

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Second event is processed...



CSC 308 Requirements Engineering

21

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

The client notifies the server



CSC 308 Requirements Engineering

22

Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Final event is sent...and
eventually processed (ghost token)



CSC 308 Requirements Engineering

23

Final State

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Client is ready for next event



CSC 308 Requirements Engineering

24

Petri Net Wrap-Up

• Clean notation for specifying concurrent properties
• Graphical notation hides underlying formalism

– Makes it easier to understand
• Tool support and execution engines exists for this

technique
– The latter can help in testing how well a Petri net

specifies a property by running it on test cases


