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Requirements Techniques, cont.

• Formal requirements analysis techniques include:
– DFD (covered)
– ERD (covered)
– Finite State Machines
– Petri Nets
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Finite State Machines

• A requirements technique for modeling the states
and transitions of a software system

• Finite state machines are used in other contexts
– automata theory and compilers, for example

• More precise than data-flow diagrams
– data-flow diagrams specify only the nature of a system’s

data flow (e.g. the what and the where)
– finite state machines provide information on how a

system progresses from state to state
¤ what is “state”
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Formal Definition

• The definition of a finite state machine (FSM)
consists of five parts
– a set of states
– a set of inputs
– a transition function
– the initial state
– a set of final states
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Simple Example

• States of a combination lock for a safe
– Safe has a dial with three positions (1, 2, & 3)
– The dial can be turned in two possible directions

¤ At any point six possible motions
• Turn left to 1 (1L)
• Turn right to 1 (1R)
• etc...

– Combination is 1L, 3R, 2L
– The possible states include the safe being locked and

unlocked, sounding the alarm, and the steps along the
combination (e.g. 1L and 3R)
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Example, cont.

• Set of States (Locked, A, B, Unlocked, Alarm)
• Set of Inputs (1L, 1R, 2L, 2R, 3L, 3R)
• Transition Function (next two slides)
• Initial State (Locked)
• Final States (Unlocked, Alarm)
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Example, cont.
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Finite State Machine Wrap-Up

• More advanced examples in other textbooks
– The infamous “Elevator Example” is a good one (Schach)

• Demonstrates
– The specification power of FSMs

• Typical Problem
– The number of states and transitions grows rapidly in

large systems
– Approach: decompose problem into smaller subsystems

• Tool support exists for this and related techniques
(e.g. statecharts)
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Petri Nets

• A formal technique suited for specifying the
properties of concurrent or multithreaded systems

• Typical concurrency problems
– race conditions

¤ X accesses Y before Z updates it
– deadlock

¤ X is waiting on Y which is waiting on X

• Petri nets can be used to help avoid ambiguity in
specifications that can lead to this class of problems
in multithreaded systems
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Formal Definition of Petri Nets

• A Petri net consists of four parts
– A set of places
– A set of transitions
– An input function
– An output function

• In the subsequent diagrams, the input and output
functions are represented by arrows
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Petri Net Parts

Place

Transition

Token
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Firing a transition

A transition fires when it
has a token at each input
place; as a result a token
is placed at each output
place.
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Simple Example

• A server cannot send an
event to a client until the
client has indicated that it is
ready to receive one

• Approach
– Map states into places
– Map events into transitions

• States
– Event waiting
– Event received
– Event processed
– Client Ready

• Events
– Generate Event
– Send Event
– Process Event
– Notify server
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Three events; one being received
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event gets generated
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event gets processed; waiting event
must wait since “Send Event” cannot fire.
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Another event gets generated
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

The client notifies the server
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

An event is sent...
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Second event is processed...
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

The client notifies the server
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Example, cont.

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Final event is sent...and
eventually processed (ghost token)
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Final State

Event Generator Event Waiting Event Received Event Processed

Client Ready

Generate Event

Send Event
Process Event

Notify Server

Client is ready for next event
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Petri Net Wrap-Up

• Clean notation for specifying concurrent properties
• Graphical notation hides underlying formalism

– Makes it easier to understand
• Tool support and execution engines exists for this

technique
– The latter can help in testing how well a Petri net

specifies a property by running it on test cases


