
CSC 402 Requirements Engineering

1

Overview - Object-Oriented
Analysis and Design

• Design thinking
• Object Modeling Technique

– Object-Oriented Analysis
– Object-Oriented Design

• Three models
– Object model
– Dynamic model
– Functional model

• Four phases

CSC 402 Requirements Engineering

2

Design Goals

• Design transforms requirements into
– an architecture diagram

¤ subsystems, modules and their relationships
– a detailed design

¤ a specification of the abstract interface, data structures, and
algorithms of each module

• Also develops
– a review plan for ensuring the design meets the

requirements
– a test plan for ensuring the implementation meets the

design

CSC 402 Requirements Engineering

3

Object-Oriented Software Development

• Object-Oriented Methodology
– development approach used to build complex systems using the

concepts of object, class, polymorphism, and inheritance with a view
towards reusability

– encourages software engineers to think of the problem in terms of the
application domain early and apply a consistent approach
throughout the entire life-cycle

• Object-Oriented Analysis and Design
– analysis models the “real-world” requirements, independent of the

implementation environment
– design applies object-oriented concepts to develop and communicate

the architecture and details of how to meet requirements

CSC 402 Requirements Engineering

4

Object Modeling Technique
Process via UML
• OMT [Rumbaugh et al.,1991] consists of

– building three complementary models of the system
– adding implementation details to the models
– implementing the models

• OMT includes a set of
– phases [processes]
– diagramming techniques

• OMT has four phases
– object-oriented analysis builds a real-world model
– system design determines overall architecture of system
– object design decides upon data structures and algorithms
– implementation translates design into programming language

CSC 402 Requirements Engineering

5

OMT Stages and Models

Analysis
 - Model of real-world situation
 - What ?

System Design
 - Overall architecture (sub-systems)

Object Design
 - Refinement of Design
 - Algorithms/data structures to
 implement each class

Implementation
 - Translation of object classes and
 relationships to a particular
 object-oriented language

tim
e

O
b

ject M
o

d
el

- S
tatic structure of objects and their relationships

 (object diagram
)

D
yn

am
ic M

o
d

el
- C

ontrol aspects of the system
(state diagram

s)

F
u

n
ctio

n
al M

o
d

el
- D

ata value transform
ations

(dataflow
 diagram

s)

System

CSC 402 Requirements Engineering

6

Introduction to Object-Oriented Analysis

• Semi-formal technique
– class modeling
– dynamic modeling
– functional modeling

• These steps focus on
– data
– actions
– their relationships

• Reuses familiar tools
– E-R diagrams
– Finite State Machines
– Data flow diagrams

• Steps and diagrams
– typically performed in

parallel after initial class
definition

– must be kept in synch

• Object-Oriented Analysis is the “requirements phase” of
Object-Oriented Software Development

– think of it as an alternative semi-formal technique

CSC 402 Requirements Engineering

7

Object-Oriented Analysis

• Builds a “real-world” model from requirements
– client interviews, domain knowledge, real-world

experience collected in use cases and other simple
notations

• OOA models address three aspects of the system
(its objects)
– class structure and relationships
– sequencing of interactions and events
– data transformations and computations

CSC 402 Requirements Engineering

8

Models of Object-Oriented Analysis (cf UML)

• Class Model
– static structure
– what objects are in the system?
– how are they related?

• Dynamic Model
– behavioral aspects
– what events occur in the system
– when do they occur and in what

order?
• Functional Model

– data transformations
– “what” does the system do

• Data-Oriented

• Action-Oriented

• Both Data and Actions

CSC 402 Requirements Engineering

9

OO Analysis and Design: Steps

• Class Modeling
• Dynamic Modeling
• Functional Modeling
• Add Operations to the Class Model
• Iterate and refine the models

– After the first iteration, steps may occur in parallel
or out of order

– All models must be kept in synch as changes are made

CSC 402 Requirements Engineering

10

Class Modeling

• Identify objects and classes
• Prepare a data dictionary
• Identify associations between objects
• Identify class attributes and initial set of operations
• Organize object classes using inheritance

CSC 402 Requirements Engineering

11

Classes, Attributes and Operations

• Attributes define the properties of the objects
– every instance of the class has the same attributes
– an attribute has a data type
– the values of the attributes may differ among instances

• Operations define the behavior of the objects
– action performed on or by an object
– available for all instances of the class
– need not be unique among classes

Class Attributes Operations
ball radius, weight catch, throw
football air pressure pass, kick, hand-off
baseball liveness hit, pitch, tag

CSC 402 Requirements Engineering

12

Object Model Notation (refresher)

Class Name

(Class Name)

InstanceVariable1
InstanceVariable2: type

InstanceVariable1 = value
InstanceVariable2: type
Method1()
Method2(arguments) return type

Method1()
Method2(arguments) return type

Classes are represented as rectangles;

The class name is at the top, followed by attributes
(instance variables) and methods (operations)

Depending on context some information can be
hidden such as types or method arguments

Objects are represented as rounded rectangles;

The object’s name is its classname surrounded by
parentheses

Instance variables can display the values that they
have been assigned; pointer types will often point
(not shown) to the object being referenced

CSC 402 Requirements Engineering

13

OMT Instantiation Notation

Class Name

attribute_1: data_type_1 = default_1
attribute_2: data_type_2 = default_2

. . .
attribute_m: data_type_m =

default_m

(Class Name)

attribute_1 = value_1
attribute_2 = value _2

. . .
attribute_m = value _m

Class

Instance

CSC 402 Requirements Engineering

14

Instantiation - Example

Person

name
age

weight

(Person)

(Person)

Joe Smith
age=39

weight=158

Mary Wilson
age=27

weight=121

CSC 402 Requirements Engineering

15

Inheritance

• Classes with similar attributes and operations may
be organized hierarchically

• Common attributes and operations are factored out
and assigned to a broad superclass (generalization)
– generalization is the “is-a” relationship
– superclasses are ancestors, subclasses are descendants

• Classes iteratively refined into subclasses that inherit
the attributes and operations of the superclass
(specialization)

• Do you see any disadvantages to inheritance?

CSC 402 Requirements Engineering

16

OMT Inheritance Notation

Generalization

Specialization

Superclass

Subclasses

Class
Attributes

Operations

Ball
Radius, Weight
Throw, Catch

Football
air pressure

pass, kick, hand-off

Baseball
liveness

hit, pitch, tag

Basketball
air pressure , dimples
shoot, dribble, pass

CSC 402 Requirements Engineering

17

Association and Links

• An association is a relation among two or more classes
describing a group of links, with common structure and
semantics

• A link is a relationship or connection between objects and is
an instance of an association

• A link or association is inherently bi-directional
– the name may imply a direction, but it can usually be inverted
– the diagram is usually drawn to read the link or association from left

to right or top to bottom
• A role is one end of an association

– roles may have names

CSC 402 Requirements Engineering

18

OMT Association Notation

 Person Company

Company Person

Works For

Class, Association, and Roles

Object and Link

 Johnson IBM

Employer Employee

Works For

equivalent

(Company)(Person)

Employs

CSC 402 Requirements Engineering

19

Association and Links

Country

name

(Country)

Canada

City

name

has-capital

(City)

Ottawa

has-capital

(Country)

France

(City)

Paris

has-capital

(Country)

Austria

(City)

Vienna

has-capital

Class diagram

Instance diagram

CSC 402 Requirements Engineering

20

• Multiplicity is the number of instances of one class
that may relate to a single instance of an associated
class
– 1-to-1
– 1-to-many (0 or more)
– 1-to-(zero-or-one) ‘optional’
– 1-to-(one-or-more) ‘required’
– 1-to-n

Multiplicity of Associations

n

1+

CSC 402 Requirements Engineering

21

OMT Multiplicity Notation

 Instructor Courses

Student

Teaches1+

Takes
6-65

Each course has at least one instructor
 and between 6 and 65 students
A student may take many courses
An instructor may teach many courses

CSC 402 Requirements Engineering

22

Link attributes for associations

Person

name
address

Company

name

works-for

salary
job title

CSC 402 Requirements Engineering

23

Aggregation

• Aggregation is a special form of association that
indicates a “part-of” relationship between a whole
and its parts

• Useful when the parts do not have independent
existence
– A part is subordinate to the whole

• In an aggregation, properties and operations may
be propagated from the whole to its parts

CSC 402 Requirements Engineering

24

OMT Aggregation Notation

Window

TitleBar ScrollBar Border

CSC 402 Requirements Engineering

25

Microcomputer

Monitor

Chassis CPU

System box Mouse Keyboard

RAM Fan

1+

1+1+

Multilevel aggregation

CSC 402 Requirements Engineering

26

An Example

FastData Inc. wants a subsystem to process office
supply orders via the Web. The user will supply via a
form their name, password, account number, and a
list of supplies along with an indication of the
quantities desired. The subsystem will validate the
input, enter the order into a database, and generate a
receipt with the order number, expected ship date,
and the total cost of the order. If the validation step
fails, the subsystem will generate an error message
describing the cause of the failure.

CSC 402 Requirements Engineering

27

Purpose of Example

• We will demonstrate the UML /OMT using this
example
– Class modeling will be done first
– Dynamic and Functional modeling will occur next
– Detailed design after that

• Things to remember
– This example does not demonstrate how the technique is

applied to ALL problems. Be sure to distinguish between
the details of the example and the details of the technique!

CSC 402 Requirements Engineering

28

Concise Problem Definition

•Define the problem concisely
– Use only a single sentence

“FastData, Inc. employees may order office supplies
via the Web and receive a receipt confirming the
order”

•This is the first step towards identifying the classes
of the subsystem

CSC 402 Requirements Engineering

29

Informal Strategy

•Identify the constraints governing the system
– Use only a single paragraph

“FastData, Inc. employees may order office supplies via the Internal Web
and receive a receipt confirming the order. The order must include the user
name, user password, account number, and the list of supplies. A receipt
must be generated containing an order number, ship date, and total cost. If
the order is valid, it must be entered into an order database. If the order is
invalid, an error message must be generated.”

•We now have more information to be used in
identifying classes for the subsystem

CSC 402 Requirements Engineering

30

Formalize the Strategy

•Identify the nouns of the description, which serve as the basis
for identifying the subsystem’s classes.

– Look for out-of-domain nouns (and throw them out!)
– Look for abstract nouns (use these for attributes)
– The remaining nouns are good candidates!

“FastData, Inc. employees may order office supplies via the
Internal Web and receive a receipt confirming the order. The
order must include the user name, user password, account
number, and the list of supplies. A receipt must be generated
containing an order number, ship date, and total cost. If the
order is valid, it must be entered into an order database. If the
order is invalid, an error message must be generated.”

CSC 402 Requirements Engineering

31

Nouns

• Out-of-Domain
– Internal Web

• Abstract
– user name
– user password
– account number
– order number
– ship date
– total cost
– list of supplies
– office supplies -> item

• Good Candidates
– employee
– item (was office supplies)
– receipt
– order
– order database
– error message

• Notes
We have decided not to worry

about the Web in this design.
Instead we focus on the
inputs and outputs and defer
the Web details until later.

CSC 402 Requirements Engineering

32

Class Model

order DBemployee

name
password

order

number
account
total cost

receipt

order number
ship date
total cost

item

name
quantity
price

error message

explanation

CSC 402 Requirements Engineering

33

Class Model, continued

response

receipt

order number
ship date
total cost

error message

explanation

Since both receipts and error messages will be generated as output
it might make sense to have them as subclasses of a more general
class. We do not know enough yet to assign it attributes however.

CSC 402 Requirements Engineering

34

Class Model, relationships

order DBemployee

name
password

order

number
account
total cost

receipt

order number
ship date
total cost

item

name
quantity
price

1+

error message

explanation

CSC 402 Requirements Engineering

35

Overview - Object-Oriented
Analysis and Design
• Three models

– Object model
– Dynamic model
– Functional model

• Four phases
– object-oriented analysis
– system design
– object design
– Implementation

• Detailed Design
• Integration Testing

CSC 402 Requirements Engineering

36

OMT Analysis and Design: Steps

• Class Modeling
• Dynamic Modeling
• Functional Modeling
• Add Operations to the Class Model
• Iterate and refine the models

– After the first iteration, steps may occur in parallel
or out of order

– All models must be kept in synch as changes are made

CSC 402 Requirements Engineering

37

Dynamic Modeling

• Prepare scenarios
• Identify events between objects
• Prepare an event trace for each scenario
• Build a state diagram
• Match events between objects to verify consistency

CSC 402 Requirements Engineering

38

Dynamic Model Diagrams

• The dynamic model tracks behavior over time
– described in terms of change in objects or event sequences

between objects
• Event Trace Diagrams

– show typical dialog or usage scenarios as well as
exceptional and/or special cases

• State Diagrams
– relates events, states, and state transitions
– a scenario is a path through the state diagram

CSC 402 Requirements Engineering

39

Events and Scenarios

• An event is [an ‘instantaneous’ change of state in the
application domain] that triggers a change to an object’s
object state (?)
– events have attributes, which are the information transferred from

one object to another
• A scenario is a specific sequence of events representing a

path through a system’s state space
• Legitimate scenarios

– common paths (e.g. frequently used functionality)
– Error conditions and known exceptions

• An event trace extends the scenario to clarify events between
objects

CSC 402 Requirements Engineering

40

Event classes and attributes

• Event Classes
– airplane departs (airline,

flight number, city)
– mouse button pushed

(button, location)
– phone receiver lifted
– digit dialed (digit)

• Events
– United Flight 23 departs from

Rome
– right mouse button pushed at

(29, 30)
– phone receiver lifted
– digit dialed (2)

CSC 402 Requirements Engineering

41

An example scenario

• Scenario for a phone call
– caller lifts receiver
– dial tone begins
– caller dials digit (2)
– caller dials digit (7)
– caller dials digit (7)
– caller dials digit (6)
– specified phone rings
– etc.

CSC 402 Requirements Engineering

42

OMT Event Trace Notation

• objects are vertical lines
• events are horizontal lines

 Customer Pump Credit Corp
“select method of payment”

select “credit”

insert card

slide card through reader

“select grade”

select “premium”

verify account

return “approved”

display unit cost, total cost, gallons dispensed

“pump on”

pump gas

update display with total cost, gallons dispensed
charge total cost to account

• arrows indicate sender and receiver
• time passes from top to bottom

CSC 402 Requirements Engineering

43

Event Trace: example

Caller Phone line Callee
caller lifts receiver

dial tone begins

dials (2)

dial tone ends

dials (7)

dials (7)

ringing tone phone rings

answers phone

phones connectedphones connected

callee hangs up

connection broken connection broken

caller hangs up

dials (6)

CSC 402 Requirements Engineering

44

States and Transitions

• A state is an interval between events (values of
relevant variables to the problem…)
– it may have an activity that can trigger starting,

intermediate and ending events
– defined in terms of a subset of object attributes and links

• A state transition is a change in an object’s attributes
and links
– it is the response of an object to an event
– all transitions leaving a state must correspond to distinct

events

CSC 402 Requirements Engineering

45

OMT State Notation

• states represented as nodes: rounded rectangles with state name
– initial state represented as solid circle
– final state represented as bull’s eye

• transitions represented as edges between nodes and labeled with an
event name

STATE-1

STATE-3 Event-d

Event-a
Event-
c

result

STATE-2
Event-b

Event-e

CSC 402 Requirements Engineering

46

OMT State Diagram - Example

Start White´s
turn

Black´s
turn

black
moves

white
moves

checkmate

checkmate

stalemate

stalemate

Black wins

Draw

White wins

Chess game

CSC 402 Requirements Engineering

47

Guards, Activities and Actions

• Guards are boolean conditions on attribute values
– transition can only happen when guard evaluates to “true”
– automatic transitions occur as soon as an activity is complete (check guard!)

• Activities take time to complete
– activities take place within a ‘state’

• Actions are relatively instantaneous
– actions take place on a transition or within a state (entry, exit, event actions)
– output can occur with an event

STATE-2

action-Event / action

guarded-Event [guard-2]

STATE-1A-STATE
entry / entry-action

do: activity-A
event-1 / action-1

...
exit / exit-action

output-Event / output

[guard-1]

CSC 402 Requirements Engineering

48

Guards, Activities and Actions - Example

Vending machine model

Idle
Collecting money

coins in (amount) / add to balance

do: test item and compute change

do: dispense item do: make change

coins in (amount) / set balance

cancel / refund coins

select (item)[item empty] [change < 0]

[change = 0] [change > 0]

CSC 402 Requirements Engineering

49

OMT State Relationships

• States can be nested or concurrent
• Events can be split and merged

Superstate (nesting) Superstate (concurrency)

substate-1 substate-2 substate-1

substate-1

substate-2

substate-2

substate-3

substate-4

substate-4

substate-3
split-event-0

event-1

event-1

event-1

event-2

event-2

event-2

merged-event-3

event-3

merged-event-4

(Synchronization)

CSC 402 Requirements Engineering

50

State Generalization: example

Transmission

Neutral Reverse

First Second Third

Forward
stop

push N push F

push R

push N

upshift

downshift

upshift

downshift

CSC 402 Requirements Engineering

51

Returning to the FastData example

• Lets define a scenario for an office supply order
processor: a successful order
– Alternatively we could describe a scenario for an

unsuccessful order
• Assumptions

– We are not going to consider how the order form is
transmitted to our system nor how our receipt is
transmitted back

– The employee object is responsible for validating the
input to the system

CSC 402 Requirements Engineering

52

A successful order

• input received (we don’t care how)
• create employee object
• pass input to employee
• validate name and password
• create order object
• validate account number
• for each item

– create item
– add item to order and validate item

• compute total cost
• add order to order DB and retrieve order number and ship date
• generate receipt
• return receipt (we don’t care how)

CSC 402 Requirements Engineering

53

Event Trace

Employee Order Item Order
DB

Employee
DB

Product
DB

Account
DB

Receipt

validate name/password

validated

create

validate account number
validated

create

add

validate item

validated

re
pe

at

CSC 402 Requirements Engineering

54

Event Trace, continued

Employee Order Item Order
DB

Employee
DB

Product
DB

Account
DB

Receipt

compute cost

add order

retrieve order number

retrieve cost

retrieve ship date

create

CSC 402 Requirements Engineering

55

(One Possible) State Transition Diagram

Idle
input
received

Employee
Validated

Employee
Created

validated
Order

Created
create

Initialization

validated

Process Order

Process
Order

Create
Item

validated

Order
Finished?

add

[remaining
items > 0]

Finalize

do: add order
 create receipt

[remaining items = 0]

return
receipt

CSC 402 Requirements Engineering

56

OMT Analysis and Design: Steps

• Class Modeling
• Dynamic Modeling
• Functional Modeling
• Add Operations to the Class Model
• Iterate and refine the models

– After the first iteration, steps may occur in parallel
or out of order

– All models must be kept in synch as changes are made

CSC 402 Requirements Engineering

57

Functional Modeling

• Identify input and output values

• Build data flow diagrams showing transformation
and functional dependencies (expanding non-trivial
processes)

• Describe functions (in some language)

• Identify constraints between objects
(add to DM and FM)

CSC 402 Requirements Engineering

58

OMT DFD Notation

Process-1 Process-2
data-1

Actor-1 DataStore-1

• Processes transform data
• Actors are sources or sinks of data (= Active Objects)
• Data stores are persistent repositories of data, which may be accessed or

updated (= Passive Objects)
• Data flows between processes, actors, and data stores

data-2source-data

Actor-2
sink-data

CSC 402 Requirements Engineering

59

Data Value Notation

• Data may be a composed, decomposed, or duplicated

data-1

data-2

data-1

data-1

data-1

composite

composite

data-
1

data-
2

CSC 402 Requirements Engineering

60

Control Flow in the DFD

Customer

Account

balance

verify

update
amount

cash

password

coded
password

password
OK

CSC 402 Requirements Engineering

61

Hierarchical DFD

• High-level functionality iteratively refined into smaller
functional units
– each high-level process may be expanded into a separate DFD
– top-level processes correspond to operations on complex objects,

while lower-level processes are operations on basic objects
• Nesting depth is dependent on application

– terminates with simple functions
– each level must be coherent

• Hierarchical DFD corresponds to the following
– context diagram shows boundaries of system
– mid-level DFDs show context decomposition
– primitive DFDs are simple functions that need not be expanded

CSC 402 Requirements Engineering

62

Data Flow Diagram: Office Supply example

Web
Server

input
stream

employee

Employee
DB

validate
employee

name/
password

verification

response (receipt)

validate
order

order

Account
DB

verification account
number

CSC 402 Requirements Engineering

63

Data Flow Diagram: Office Supply example

response (receipt)

order process
order

Product
DB

verification item

finalize
order

validated
order

Order
DB

orderorder
info

CSC 402 Requirements Engineering

64

OMT Analysis and Design: Steps

• Class Modeling
• Dynamic Modeling
• Functional Modeling
• Add Operations to the Class Model
• Iterate and refine the models

– After the first iteration, steps may occur in parallel
or out of order

– All models must be kept in synch as changes are made

CSC 402 Requirements Engineering

65

Add Operations to the Object Model

• From the Object Model:
– Reading/writing object attributes (e.g., get_width,

get_height of Rectangle)
• From Events, State Actions, and Activities

in the Dynamic Model:
– Each event sent to an object => operation

(e.g., Vending machine: set_balance)
– Actions/activities may be operations

(e.g., Vending machine: do: test item and compute change)
• From Functions in the Functional Model:

– Each function in the DFD corresponds to an operation
(e.g., bank example: subtract withdrawal from Account)

CSC 402 Requirements Engineering

66

Relation of the three models

Things
object model

Interactions
dynamic model

Transformations
functional model

CSC 402 Requirements Engineering

67

Relation of Dynamic Model
to Class Model
• Dynamic model provides a second dimension - time - to

objects and classes
• Dynamic model builds upon and is derived from object

model
– states in dynamic model represent sets of attribute and

link values in object model
– events in dynamic model yield operations in object model

• Relation between organization
– inherent differences in objects are distinguished in object

model as distinct classes
– temporal differences in object attributes are distinguished

in dynamic model as distinct states

CSC 402 Requirements Engineering

68

Relation of Functional Model
to Class and Dynamic Model
• Functional model describes the actions (what), the dynamic

model describes the timing (when), and the class model
describes what takes action (who)

• Functional model builds on / derived from class model
– processes in the functional model correspond to

operations on objects
– The input streams of processes in the functional model

identify objects that are related by function
– data flows in the functional model correspond to objects

or attribute values in the class model
• Functional model may capture actions not part of any

scenario

CSC 402 Requirements Engineering

69

OMT: Four phases

• Object-oriented analysis
– builds a real-world model

• System design and Architecture
– determines overall architecture of system

• Object design
– decides upon data structures and algorithms

• Implementation
– translates design into programming language

CSC 402 Requirements Engineering

70

System Design and Architecture

• Devises high-level strategy for solving problem
– Set trade-off priorities

• Construct system architecture by organizing into subsystems (system
structuring)
– Choose an approach for persistent data management (repository

model)
– Allocate components to processors and tasks (distribution model)

• Choose the implementation of control in software system (control
modeling)
– Identify concurrency inherent in the problem
– Define access to global resources

• Divide problem into implementable components (modular
decomposition)

CSC 402 Requirements Engineering

71

Object Design

• Full definition of all the classes in the system
• Implementation alternatives evaluated and chosen
• Combine three models to obtain class operations
• Design algorithms to implement operations
• Optimize access paths to data
• Implement control for external interactions
• Adjust class structure to increase inheritance
• Design associations
• Determine object representation
• Package classes and associations into implementable

modules

CSC 402 Requirements Engineering

72

Detailed Design

• Detailed design is the process of completely
specifying an architectural design such that module
implementation can proceed (independently)

• Interface specifications
– brief description of each module
– attributes

¤ brief description and specify types
– operations

¤ brief description
¤ list of parameters and parameter types
¤ return type (if applicable)

CSC 402 Requirements Engineering

73

Detailed Design, continued

• Algorithm and data structure specification
– the designer can give hints as to what algorithms or data

structures might be most useful for a particular module
– also, the client may have specified a particular algorithm

or data structure that must be used
– in addition, constraints in the requirements may require

one approach over another
¤ for instance, implementing a data structure so that it uses the

minimum amount of memory possible vs. keeping everything in
memory for speed

CSC 402 Requirements Engineering

74

Mapping design into code

• Most programming languages provide very similar
sets of features
– user-defined types
– control structures

¤ if...then...else...
¤ while x do y
¤ for i = 1 to x
¤ etc

– etc.
• This means that, in general, operations can be

expressed in many different languages

CSC 402 Requirements Engineering

75

Mapping design into code, continued

• Major differences between languages usually fall
into these categories
– compiled vs. interpreted
– procedural vs. object-oriented
– general purpose vs. application/domain specific

¤ e.g. C++ vs. FileMaker Pro’s scripting language

• If a design takes advantage of, or depends on, one
or more of these features then certain programming
languages have to be excluded from
implementation

CSC 402 Requirements Engineering

76

Modularity Mechanisms

• One important feature of any programming
language is how it can represent modules directly
– C and C++ have separate header and body files
– Java has package names and class files
– Ada has a construct called a package with a specification

and body (implementation)
– etc.

• These features are important since it makes it easier
to map the design into code and to trace a code
module back to its design counterpart

