
Slide 1.1

© The McGraw-Hill Companies, 2007

Object-Oriented and
Classical Software

Engineering

Seventh Edition, WCB/McGraw-Hill, 2007

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 1.2

© The McGraw-Hill Companies, 2007

CHAPTER 1

THE SCOPE OF
 SOFTWARE

ENGINEERING

Slide 1.3

© The McGraw-Hill Companies, 2007

Outline

 Historical aspects

 Economic aspects

 Maintenance aspects

 Requirements, analysis, and design aspects

 Team development aspects

 Why there is no planning phase

Slide 1.4

© The McGraw-Hill Companies, 2007

Outline (contd)

 Why there is no testing phase

 Why there is no documentation phase

 The object-oriented paradigm

 The object-oriented paradigm in perspective

 Terminology

 Ethical issues

Slide 1.5

© The McGraw-Hill Companies, 2007

1.1 Historical Aspects

 1968 NATO Conference, Garmisch, Germany

 Aim: To solve the software crisis

 Software is delivered
Late

Over budget

With residual faults

 Ref - Chaos Report (linked on schedule page)

Slide 1.6

© The McGraw-Hill Companies, 2007

Standish Group Data

 Data on
9236
projects
completed
in 2004

Figure 1.1

Slide 1.7

© The McGraw-Hill Companies, 2007

Cutter Consortium Data

 2002 survey of information technology
organizations
78% have been involved in disputes ending in litigation

 For the organizations that entered into litigation:
In 67% of the disputes, the functionality of the

information system as delivered did not meet up to the
claims of the developers

In 56% of the disputes, the promised delivery date
slipped several times

In 45% of the disputes, the defects were so severe that
the information system was unusable

Slide 1.8

© The McGraw-Hill Companies, 2007

Conclusion

 The software crisis has not been solved

 Perhaps it should be called the software
depression
Long duration

Poor prognosis

Slide 1.9

© The McGraw-Hill Companies, 2007

1.2 Economic Aspects

 Coding method CMnew is 10% faster than currently
used method CMold. Should it be used?

 Common sense answer
Of course!

 Software Engineering answer
Consider the cost of training

Consider the impact of introducing a new technology

Consider the effect of CMnew on maintenance

Deal with customer(?) “beliefs” about CMnew

Slide 1.10

© The McGraw-Hill Companies, 2007

1.3 Maintenance Aspects

 Life-cycle model
The steps (phases) to follow when building software

A theoretical description of what should be done
ν affects cultural and behavioral thinking (hopefully!)

 Life cycle
The actual steps performed on a specific product

ν how does it match the planned model

– and should it?

Slide 1.11

© The McGraw-Hill Companies, 2007

Waterfall Life-Cycle Model

 Classical model (1970)

Figure 1.2

Slide 1.12

© The McGraw-Hill Companies, 2007

Typical Classical Phases

 Requirements phase
Explore the concept

Elicit the client’s requirements
ν exactly what is a “requirement”? (wants, needs, source?)

ν involves “empathy” and broad systems understanding

 Analysis (specification) phase
Analyze the client’s requirements

Draw up the specification document

Draw up the software project management plan

“What the product is supposed to do”
ν see Jackson

Slide 1.13

© The McGraw-Hill Companies, 2007

Typical Classical Phases (contd)

 Design phase
Architectural design, followed by

Detailed design

“How the product does it”
ν translates customer requirements into something a programmer

can write in code.

 Implementation phase
Coding

Unit testing

Integration

Acceptance testing

Slide 1.14

© The McGraw-Hill Companies, 2007

Typical Classical Phases (contd)

 Postdelivery maintenance
Corrective maintenance

Perfective maintenance

Adaptive maintenance

 Retirement

Slide 1.15

© The McGraw-Hill Companies, 2007

1.3.1 Classical and Modern Views of Maintenance

 Classical maintenance
Development-then-maintenance model

 This is a temporal definition
Classification as development or maintenance depends

on when an activity is performed

Slide 1.16

© The McGraw-Hill Companies, 2007

Classical Maintenance Defn — Consequence 1

 A fault is detected and corrected one day after the
software product was installed
Classical maintenance

 The identical fault is detected and corrected one
day before installation
Classical development

Slide 1.17

© The McGraw-Hill Companies, 2007

Classical Maintenance Defn — Consequence 2

 A software product has been installed

 The client wants its functionality to be increased
Classical (perfective) maintenance

 The client wants the identical change to be made
just before installation (“moving target problem”)
Classical development

Slide 1.18

© The McGraw-Hill Companies, 2007

Classical Maintenance Definition

 The reason for these and similar unexpected
consequences
Classically, maintenance is defined in terms of the time

at which the activity is performed

 Another problem:
Development (building software from scratch) is rare

today

Reuse is widespread

Slide 1.19

© The McGraw-Hill Companies, 2007

Modern Maintenance Definition

 In 1995, the International Standards Organization
and International Electrotechnical Commission
defined maintenance operationally

 Maintenance is nowadays defined as
The process that occurs when a software artifact is

modified because of a problem or because of a need for
improvement or adaptation

Slide 1.20

© The McGraw-Hill Companies, 2007

Modern Maintenance Definition (contd)

 In terms of the ISO/IEC definition
Maintenance occurs whenever software is modified

Regardless of whether this takes place before or after
installation of the software product

 The ISO/IEC definition has also been adopted by
IEEE and EIA

Slide 1.21

© The McGraw-Hill Companies, 2007

Maintenance Terminology in This Book

 Postdelivery maintenance
Changes after delivery and installation [IEEE 1990]

 Modern maintenance (or just maintenance)
Corrective, perfective, or adaptive maintenance

performed at any time [ISO/IEC 1995, IEEE/EIA 1998]

Slide 1.22

© The McGraw-Hill Companies, 2007

1.3.2 The Importance of Postdelivery Maintenance

 Bad software is discarded

 Good software is maintained, for 10, 20 years or
more

 Software is a model of reality, which is constantly
changing

Slide 1.23

© The McGraw-Hill Companies, 2007

Time (= Cost) of Postdelivery Maintenance

(a) Between 1976 and 1981

(b) Between 1992 and 1998

Figure 1.3

Slide 1.24

© The McGraw-Hill Companies, 2007

The Costs of the Classical Phases

 Surprisingly, the costs of the classical phases
have hardly changed

Figure 1.4

Slide 1.25

© The McGraw-Hill Companies, 2007

Consequence of Relative Costs of Phases

 Return to CTold and CTnew

 Reducing the coding cost by 10% yields at most a
0.85% reduction in total costs
Consider the expenses and disruption incurred

 Reducing postdelivery maintenance cost by 10%
yields a 7.5% reduction in overall costs

Slide 1.26

© The McGraw-Hill Companies, 2007

1.4 Requirements, Analysis, and Design Aspects

 The earlier we detect and correct a fault, the less it
costs us

Slide 1.27

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

Figure 1.5

 The cost of
detecting and
correcting a
fault at each
phase

Slide 1.28

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 The
previous
figure
redrawn
on a
linear
scale

Figure 1.6

Slide 1.29

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 To correct a fault early in the life cycle
Usually just a document needs to be changed

 To correct a fault late in the life cycle
Change the code and the documentation

Test the change itself

Perform regression testing

Reinstall the product on the client’s computer(s)

Slide 1.30

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 Between 60 and 70% of all faults in large-scale
products are requirements, analysis, and design
faults

 Example: Jet Propulsion Laboratory inspections
1.9 faults per page of specifications

0.9 per page of design

0.3 per page of code

Slide 1.31

© The McGraw-Hill Companies, 2007

Conclusion

 It is vital to improve our requirements, analysis,
and design techniques
To find faults as early as possible

To reduce the overall number of faults (and, hence, the
overall cost)

Slide 1.32

© The McGraw-Hill Companies, 2007

1.5 Team Programming Aspects

 Hardware is cheap
We can build products that are too large to be written by

one person in the available time

 Software is built by teams
Interfacing problems between modules

Communication problems among team members

Slide 1.33

© The McGraw-Hill Companies, 2007

1.6 Why There Is No Planning Phase

 We cannot plan at the beginning of the project
—we do not yet know exactly what is to be built

Slide 1.34

© The McGraw-Hill Companies, 2007

Planning Activities of the Classical Paradigm

 Preliminary planning of the requirements and
analysis phases at the start of the project

 The software project management plan is drawn
up when the specifications have been signed off
by the client

 Management needs to monitor the SPMP
throughout the rest of the project

Slide 1.35

© The McGraw-Hill Companies, 2007

Conclusion

 Planning activities are carried out throughout the
life cycle

 There is no separate planning phase

Slide 1.36

© The McGraw-Hill Companies, 2007

1.7 Why There Is No Testing Phase

 It is far too late to test after development and
before delivery

Slide 1.37

© The McGraw-Hill Companies, 2007

Testing Activities of the Classical Paradigm

 Verification
Testing at the end of each phase (too late)

 Validation
Testing at the end of the project (far too late)

Slide 1.38

© The McGraw-Hill Companies, 2007

Conclusion

 Continual testing activities must be carried out
throughout the life cycle

 This testing is the responsibility of
Every software professional, and

The software quality assurance group

 There is no separate testing phase

Slide 1.39

© The McGraw-Hill Companies, 2007

1.8 Why There Is No Documentation Phase

 It is far too late to document after development
and before delivery

Slide 1.40

© The McGraw-Hill Companies, 2007

Documentation Must Always be Current

 Key individuals may leave before the
documentation is complete

 We cannot perform a phase without having the
documentation of the previous phase

 We cannot test without documentation

 We cannot maintain without documentation

Slide 1.41

© The McGraw-Hill Companies, 2007

Conclusion

 Documentation activities must be performed in
parallel with all other development and
maintenance activities

 There is no separate documentation phase

Slide 1.42

© The McGraw-Hill Companies, 2007

1.9 The Object-Oriented Paradigm

 The structured paradigm was successful initially
It started to fail with larger products (> 50,000 LOC)

 Postdelivery maintenance problems (today, 70 to
80% of total effort)

 Reason: Structured methods are
Action oriented (e.g., finite state machines, data flow

diagrams); or

Data oriented (e.g., entity-relationship diagrams,
Jackson’s method);

But not both

Slide 1.43

© The McGraw-Hill Companies, 2007

The Object-Oriented Paradigm (contd)

 Both data and actions are of equal importance

 Object:
A software component that incorporates both data and

the actions that are performed on that data

 Example:
Bank account

ν Data: account balance

ν Actions: deposit, withdraw, determine balance

Slide 1.44

© The McGraw-Hill Companies, 2007

Structured versus Object-Oriented Paradigm

 Information hiding

 Responsibility-driven design

 Impact on maintenance,
development

Figure 1.7

Slide 1.45

© The McGraw-Hill Companies, 2007

Information Hiding

 In the object-oriented version
The solid line around accountBalance denotes that

outside the object there is no knowledge of how
accountBalance is implemented

 In the classical version
All the modules have details of the implementation of

account_balance

Slide 1.46

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm

 With information hiding, postdelivery maintenance
is safer
The chances of a regression fault are reduced

 Development is easier
Objects generally have physical counterparts

This simplifies modeling (a key aspect of the object-
oriented paradigm)

Slide 1.47

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm (contd)

 Well-designed objects are independent units
Everything that relates to the real-world item being

modeled is in the corresponding object —
encapsulation

Communication is by sending messages

This independence is enhanced by responsibility-driven
design (see later)

Slide 1.48

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm (contd)

 A classical product conceptually consists of a
single unit (although it is implemented as a set of
modules)
The object-oriented paradigm reduces complexity

because the product generally consists of independent
units

 The object-oriented paradigm promotes reuse
Objects are independent entities

Slide 1.49

© The McGraw-Hill Companies, 2007

Responsibility-Driven Design

 Also called design by contract

 Send flowers to your mother in Chicago
Call 1-800-flowers

Where is 1-800-flowers?

Which Chicago florist does the delivery?

Information hiding

Send a message to a method [action] of an object
without knowing the internal structure of the object

Slide 1.50

© The McGraw-Hill Companies, 2007

Classical Phases vs Object-Oriented Workflows

 There is no correspondence between phases and
workflows

Figure 1.8

Slide 1.51

© The McGraw-Hill Companies, 2007

Analysis/Design “Hump”

 Structured paradigm:
There is a jolt between analysis (what) and design

(how)

 Object-oriented paradigm:
Objects enter from the very beginning

Slide 1.52

© The McGraw-Hill Companies, 2007

Analysis/Design “Hump” (contd)

 In the classical paradigm
Classical analysis

ν Determine what has to be done

Design
ν Determine how to do it

ν Architectural design — determine the modules

ν Detailed design — design each module

Slide 1.53

© The McGraw-Hill Companies, 2007

Removing the “Hump”

 In the object-oriented paradigm
Object-oriented analysis

ν Determine what has to be done

ν Determine the objects

Object-oriented design
ν Determine how to do it

ν Design the objects

 The difference between the two paradigms is
shown on the next slide

Slide 1.54

© The McGraw-Hill Companies, 2007

In More Detail

 Objects enter here
Figure 1.9

Slide 1.55

© The McGraw-Hill Companies, 2007

Object-Oriented Paradigm

 Modules (objects) are introduced as early as the
object-oriented analysis workflow
This ensures a smooth transition from the analysis

workflow to the design workflow

 The objects are then coded during the
implementation workflow
Again, the transition is smooth

Slide 1.56

© The McGraw-Hill Companies, 2007

1.10 The Object-Oriented Paradigm in Perspective

 The object-oriented paradigm has to be used
correctly
All paradigms are easy to misuse

 When used correctly, the object-oriented paradigm
can solve some (but not all) of the problems of the
classical paradigm

Slide 1.57

© The McGraw-Hill Companies, 2007

The Object-Oriented Paradigm in Perspective (contd)

 The object-oriented paradigm has problems of its
own

 The object-oriented paradigm is the best
alternative available today
However, it is certain to be superceded by something

better in the future

Slide 1.58

© The McGraw-Hill Companies, 2007

1.11 Terminology

 Client, developer, user

 Internal software

 Contract software

 Commercial off-the-shelf (COTS) software

 Open-source software
Linus’s Law

Slide 1.59

© The McGraw-Hill Companies, 2007

Terminology (contd)

 Software

 Program, system, product

 Methodology, paradigm
Object-oriented paradigm

Classical (traditional) paradigm

 Technique

Slide 1.60

© The McGraw-Hill Companies, 2007

Terminology (contd)

 Mistake, fault, failure, error

 Defect

 Bug 
“A bug  crept into the code”

 instead of

“I made a mistake”

Slide 1.61

© The McGraw-Hill Companies, 2007

Object-Oriented Terminology

 Data component of an object
State variable

Instance variable (Java)

Field (C++)

Attribute (generic)

 Action component of an object
Member function (C++)

Method (generic)

Slide 1.62

© The McGraw-Hill Companies, 2007

Object-Oriented Terminology (contd)

 C++: A member is either an
Attribute (“field”), or a

Method (“member function”)

 Java: A field is either an
Attribute (“instance variable”), or a

Method

Slide 1.63

© The McGraw-Hill Companies, 2007

1.12 Ethical Issues

 Developers and maintainers need to be
Hard working

Intelligent

Sensible

Up to date and, above all,

Ethical

 IEEE-CS ACM Software Engineering Code of
Ethics and Professional Practice
www.acm.org/serving/se/code.htm

