
Slide 1.1

© The McGraw-Hill Companies, 2007

Object-Oriented and
Classical Software

Engineering

Seventh Edition, WCB/McGraw-Hill, 2007

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 1.2

© The McGraw-Hill Companies, 2007

CHAPTER 1

THE SCOPE OF
 SOFTWARE

ENGINEERING

Slide 1.3

© The McGraw-Hill Companies, 2007

Outline

 Historical aspects

 Economic aspects

 Maintenance aspects

 Requirements, analysis, and design aspects

 Team development aspects

 Why there is no planning phase

Slide 1.4

© The McGraw-Hill Companies, 2007

Outline (contd)

 Why there is no testing phase

 Why there is no documentation phase

 The object-oriented paradigm

 The object-oriented paradigm in perspective

 Terminology

 Ethical issues

Slide 1.5

© The McGraw-Hill Companies, 2007

1.1 Historical Aspects

 1968 NATO Conference, Garmisch, Germany

 Aim: To solve the software crisis

 Software is delivered
Late

Over budget

With residual faults

 Ref - Chaos Report (linked on schedule page)

Slide 1.6

© The McGraw-Hill Companies, 2007

Standish Group Data

 Data on
9236
projects
completed
in 2004

Figure 1.1

Slide 1.7

© The McGraw-Hill Companies, 2007

Cutter Consortium Data

 2002 survey of information technology
organizations
78% have been involved in disputes ending in litigation

 For the organizations that entered into litigation:
In 67% of the disputes, the functionality of the

information system as delivered did not meet up to the
claims of the developers

In 56% of the disputes, the promised delivery date
slipped several times

In 45% of the disputes, the defects were so severe that
the information system was unusable

Slide 1.8

© The McGraw-Hill Companies, 2007

Conclusion

 The software crisis has not been solved

 Perhaps it should be called the software
depression
Long duration

Poor prognosis

Slide 1.9

© The McGraw-Hill Companies, 2007

1.2 Economic Aspects

 Coding method CMnew is 10% faster than currently
used method CMold. Should it be used?

 Common sense answer
Of course!

 Software Engineering answer
Consider the cost of training

Consider the impact of introducing a new technology

Consider the effect of CMnew on maintenance

Deal with customer(?) “beliefs” about CMnew

Slide 1.10

© The McGraw-Hill Companies, 2007

1.3 Maintenance Aspects

 Life-cycle model
The steps (phases) to follow when building software

A theoretical description of what should be done
ν affects cultural and behavioral thinking (hopefully!)

 Life cycle
The actual steps performed on a specific product

ν how does it match the planned model

– and should it?

Slide 1.11

© The McGraw-Hill Companies, 2007

Waterfall Life-Cycle Model

 Classical model (1970)

Figure 1.2

Slide 1.12

© The McGraw-Hill Companies, 2007

Typical Classical Phases

 Requirements phase
Explore the concept

Elicit the client’s requirements
ν exactly what is a “requirement”? (wants, needs, source?)

ν involves “empathy” and broad systems understanding

 Analysis (specification) phase
Analyze the client’s requirements

Draw up the specification document

Draw up the software project management plan

“What the product is supposed to do”
ν see Jackson

Slide 1.13

© The McGraw-Hill Companies, 2007

Typical Classical Phases (contd)

 Design phase
Architectural design, followed by

Detailed design

“How the product does it”
ν translates customer requirements into something a programmer

can write in code.

 Implementation phase
Coding

Unit testing

Integration

Acceptance testing

Slide 1.14

© The McGraw-Hill Companies, 2007

Typical Classical Phases (contd)

 Postdelivery maintenance
Corrective maintenance

Perfective maintenance

Adaptive maintenance

 Retirement

Slide 1.15

© The McGraw-Hill Companies, 2007

1.3.1 Classical and Modern Views of Maintenance

 Classical maintenance
Development-then-maintenance model

 This is a temporal definition
Classification as development or maintenance depends

on when an activity is performed

Slide 1.16

© The McGraw-Hill Companies, 2007

Classical Maintenance Defn — Consequence 1

 A fault is detected and corrected one day after the
software product was installed
Classical maintenance

 The identical fault is detected and corrected one
day before installation
Classical development

Slide 1.17

© The McGraw-Hill Companies, 2007

Classical Maintenance Defn — Consequence 2

 A software product has been installed

 The client wants its functionality to be increased
Classical (perfective) maintenance

 The client wants the identical change to be made
just before installation (“moving target problem”)
Classical development

Slide 1.18

© The McGraw-Hill Companies, 2007

Classical Maintenance Definition

 The reason for these and similar unexpected
consequences
Classically, maintenance is defined in terms of the time

at which the activity is performed

 Another problem:
Development (building software from scratch) is rare

today

Reuse is widespread

Slide 1.19

© The McGraw-Hill Companies, 2007

Modern Maintenance Definition

 In 1995, the International Standards Organization
and International Electrotechnical Commission
defined maintenance operationally

 Maintenance is nowadays defined as
The process that occurs when a software artifact is

modified because of a problem or because of a need for
improvement or adaptation

Slide 1.20

© The McGraw-Hill Companies, 2007

Modern Maintenance Definition (contd)

 In terms of the ISO/IEC definition
Maintenance occurs whenever software is modified

Regardless of whether this takes place before or after
installation of the software product

 The ISO/IEC definition has also been adopted by
IEEE and EIA

Slide 1.21

© The McGraw-Hill Companies, 2007

Maintenance Terminology in This Book

 Postdelivery maintenance
Changes after delivery and installation [IEEE 1990]

 Modern maintenance (or just maintenance)
Corrective, perfective, or adaptive maintenance

performed at any time [ISO/IEC 1995, IEEE/EIA 1998]

Slide 1.22

© The McGraw-Hill Companies, 2007

1.3.2 The Importance of Postdelivery Maintenance

 Bad software is discarded

 Good software is maintained, for 10, 20 years or
more

 Software is a model of reality, which is constantly
changing

Slide 1.23

© The McGraw-Hill Companies, 2007

Time (= Cost) of Postdelivery Maintenance

(a) Between 1976 and 1981

(b) Between 1992 and 1998

Figure 1.3

Slide 1.24

© The McGraw-Hill Companies, 2007

The Costs of the Classical Phases

 Surprisingly, the costs of the classical phases
have hardly changed

Figure 1.4

Slide 1.25

© The McGraw-Hill Companies, 2007

Consequence of Relative Costs of Phases

 Return to CTold and CTnew

 Reducing the coding cost by 10% yields at most a
0.85% reduction in total costs
Consider the expenses and disruption incurred

 Reducing postdelivery maintenance cost by 10%
yields a 7.5% reduction in overall costs

Slide 1.26

© The McGraw-Hill Companies, 2007

1.4 Requirements, Analysis, and Design Aspects

 The earlier we detect and correct a fault, the less it
costs us

Slide 1.27

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

Figure 1.5

 The cost of
detecting and
correcting a
fault at each
phase

Slide 1.28

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 The
previous
figure
redrawn
on a
linear
scale

Figure 1.6

Slide 1.29

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 To correct a fault early in the life cycle
Usually just a document needs to be changed

 To correct a fault late in the life cycle
Change the code and the documentation

Test the change itself

Perform regression testing

Reinstall the product on the client’s computer(s)

Slide 1.30

© The McGraw-Hill Companies, 2007

Requirements, Analysis, and Design Aspects (contd)

 Between 60 and 70% of all faults in large-scale
products are requirements, analysis, and design
faults

 Example: Jet Propulsion Laboratory inspections
1.9 faults per page of specifications

0.9 per page of design

0.3 per page of code

Slide 1.31

© The McGraw-Hill Companies, 2007

Conclusion

 It is vital to improve our requirements, analysis,
and design techniques
To find faults as early as possible

To reduce the overall number of faults (and, hence, the
overall cost)

Slide 1.32

© The McGraw-Hill Companies, 2007

1.5 Team Programming Aspects

 Hardware is cheap
We can build products that are too large to be written by

one person in the available time

 Software is built by teams
Interfacing problems between modules

Communication problems among team members

Slide 1.33

© The McGraw-Hill Companies, 2007

1.6 Why There Is No Planning Phase

 We cannot plan at the beginning of the project
—we do not yet know exactly what is to be built

Slide 1.34

© The McGraw-Hill Companies, 2007

Planning Activities of the Classical Paradigm

 Preliminary planning of the requirements and
analysis phases at the start of the project

 The software project management plan is drawn
up when the specifications have been signed off
by the client

 Management needs to monitor the SPMP
throughout the rest of the project

Slide 1.35

© The McGraw-Hill Companies, 2007

Conclusion

 Planning activities are carried out throughout the
life cycle

 There is no separate planning phase

Slide 1.36

© The McGraw-Hill Companies, 2007

1.7 Why There Is No Testing Phase

 It is far too late to test after development and
before delivery

Slide 1.37

© The McGraw-Hill Companies, 2007

Testing Activities of the Classical Paradigm

 Verification
Testing at the end of each phase (too late)

 Validation
Testing at the end of the project (far too late)

Slide 1.38

© The McGraw-Hill Companies, 2007

Conclusion

 Continual testing activities must be carried out
throughout the life cycle

 This testing is the responsibility of
Every software professional, and

The software quality assurance group

 There is no separate testing phase

Slide 1.39

© The McGraw-Hill Companies, 2007

1.8 Why There Is No Documentation Phase

 It is far too late to document after development
and before delivery

Slide 1.40

© The McGraw-Hill Companies, 2007

Documentation Must Always be Current

 Key individuals may leave before the
documentation is complete

 We cannot perform a phase without having the
documentation of the previous phase

 We cannot test without documentation

 We cannot maintain without documentation

Slide 1.41

© The McGraw-Hill Companies, 2007

Conclusion

 Documentation activities must be performed in
parallel with all other development and
maintenance activities

 There is no separate documentation phase

Slide 1.42

© The McGraw-Hill Companies, 2007

1.9 The Object-Oriented Paradigm

 The structured paradigm was successful initially
It started to fail with larger products (> 50,000 LOC)

 Postdelivery maintenance problems (today, 70 to
80% of total effort)

 Reason: Structured methods are
Action oriented (e.g., finite state machines, data flow

diagrams); or

Data oriented (e.g., entity-relationship diagrams,
Jackson’s method);

But not both

Slide 1.43

© The McGraw-Hill Companies, 2007

The Object-Oriented Paradigm (contd)

 Both data and actions are of equal importance

 Object:
A software component that incorporates both data and

the actions that are performed on that data

 Example:
Bank account

ν Data: account balance

ν Actions: deposit, withdraw, determine balance

Slide 1.44

© The McGraw-Hill Companies, 2007

Structured versus Object-Oriented Paradigm

 Information hiding

 Responsibility-driven design

 Impact on maintenance,
development

Figure 1.7

Slide 1.45

© The McGraw-Hill Companies, 2007

Information Hiding

 In the object-oriented version
The solid line around accountBalance denotes that

outside the object there is no knowledge of how
accountBalance is implemented

 In the classical version
All the modules have details of the implementation of

account_balance

Slide 1.46

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm

 With information hiding, postdelivery maintenance
is safer
The chances of a regression fault are reduced

 Development is easier
Objects generally have physical counterparts

This simplifies modeling (a key aspect of the object-
oriented paradigm)

Slide 1.47

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm (contd)

 Well-designed objects are independent units
Everything that relates to the real-world item being

modeled is in the corresponding object —
encapsulation

Communication is by sending messages

This independence is enhanced by responsibility-driven
design (see later)

Slide 1.48

© The McGraw-Hill Companies, 2007

Strengths of the Object-Oriented Paradigm (contd)

 A classical product conceptually consists of a
single unit (although it is implemented as a set of
modules)
The object-oriented paradigm reduces complexity

because the product generally consists of independent
units

 The object-oriented paradigm promotes reuse
Objects are independent entities

Slide 1.49

© The McGraw-Hill Companies, 2007

Responsibility-Driven Design

 Also called design by contract

 Send flowers to your mother in Chicago
Call 1-800-flowers

Where is 1-800-flowers?

Which Chicago florist does the delivery?

Information hiding

Send a message to a method [action] of an object
without knowing the internal structure of the object

Slide 1.50

© The McGraw-Hill Companies, 2007

Classical Phases vs Object-Oriented Workflows

 There is no correspondence between phases and
workflows

Figure 1.8

Slide 1.51

© The McGraw-Hill Companies, 2007

Analysis/Design “Hump”

 Structured paradigm:
There is a jolt between analysis (what) and design

(how)

 Object-oriented paradigm:
Objects enter from the very beginning

Slide 1.52

© The McGraw-Hill Companies, 2007

Analysis/Design “Hump” (contd)

 In the classical paradigm
Classical analysis

ν Determine what has to be done

Design
ν Determine how to do it

ν Architectural design — determine the modules

ν Detailed design — design each module

Slide 1.53

© The McGraw-Hill Companies, 2007

Removing the “Hump”

 In the object-oriented paradigm
Object-oriented analysis

ν Determine what has to be done

ν Determine the objects

Object-oriented design
ν Determine how to do it

ν Design the objects

 The difference between the two paradigms is
shown on the next slide

Slide 1.54

© The McGraw-Hill Companies, 2007

In More Detail

 Objects enter here
Figure 1.9

Slide 1.55

© The McGraw-Hill Companies, 2007

Object-Oriented Paradigm

 Modules (objects) are introduced as early as the
object-oriented analysis workflow
This ensures a smooth transition from the analysis

workflow to the design workflow

 The objects are then coded during the
implementation workflow
Again, the transition is smooth

Slide 1.56

© The McGraw-Hill Companies, 2007

1.10 The Object-Oriented Paradigm in Perspective

 The object-oriented paradigm has to be used
correctly
All paradigms are easy to misuse

 When used correctly, the object-oriented paradigm
can solve some (but not all) of the problems of the
classical paradigm

Slide 1.57

© The McGraw-Hill Companies, 2007

The Object-Oriented Paradigm in Perspective (contd)

 The object-oriented paradigm has problems of its
own

 The object-oriented paradigm is the best
alternative available today
However, it is certain to be superceded by something

better in the future

Slide 1.58

© The McGraw-Hill Companies, 2007

1.11 Terminology

 Client, developer, user

 Internal software

 Contract software

 Commercial off-the-shelf (COTS) software

 Open-source software
Linus’s Law

Slide 1.59

© The McGraw-Hill Companies, 2007

Terminology (contd)

 Software

 Program, system, product

 Methodology, paradigm
Object-oriented paradigm

Classical (traditional) paradigm

 Technique

Slide 1.60

© The McGraw-Hill Companies, 2007

Terminology (contd)

 Mistake, fault, failure, error

 Defect

 Bug
“A bug crept into the code”

 instead of

“I made a mistake”

Slide 1.61

© The McGraw-Hill Companies, 2007

Object-Oriented Terminology

 Data component of an object
State variable

Instance variable (Java)

Field (C++)

Attribute (generic)

 Action component of an object
Member function (C++)

Method (generic)

Slide 1.62

© The McGraw-Hill Companies, 2007

Object-Oriented Terminology (contd)

 C++: A member is either an
Attribute (“field”), or a

Method (“member function”)

 Java: A field is either an
Attribute (“instance variable”), or a

Method

Slide 1.63

© The McGraw-Hill Companies, 2007

1.12 Ethical Issues

 Developers and maintainers need to be
Hard working

Intelligent

Sensible

Up to date and, above all,

Ethical

 IEEE-CS ACM Software Engineering Code of
Ethics and Professional Practice
www.acm.org/serving/se/code.htm

