
January 27, 2009 1

Requirements elicitation:
Finding the Voice of the Customer

Establishing customer requirements for a software system

• Identify sources of user requirements on your project

• Identify different classes of users

• Gain access to representatives of those classes

• Agree on ultimate decision maker to resolve conflicting
views

⇒Need iterative process to achieve shared understanding
with users

January 27, 2009 2

Goal: Software Requirements Specification

• Introduction
– Product scope, need for the system and fit with business objectives

• Overall description
– high level functionality, users, environment, assumptions and

dependencies

• External interface requirements
– user, hardware, software, communications interfaces

• Functional requirements, system features
– for each system feature: description, priority, etc

• Non-functional requirements
– performance, safety, security, quality, business rules, user documentation

• Appendices: Glossary, Analysis models, TBD’s

January 27, 2009 3

What is involved in requirements analysis and
specification

• Precisely specifying the computing needs of an individual
or an organization

• The specification needs to be in a “document” to ensure
consistency, completeness and persistence

• Informal sections should be understandable to all who will
be affected by the “system”
– How it will affect their work

– Allows them to contribute and become “satisfied customers”

– In domain (user) language

• Formal sections: precise enough to form a contract

January 27, 2009 4

Stakeholders

People and organizations

• Who will be affected by the system

• Who have direct or indirect influence on the system
requirements

January 27, 2009 5

Sources of requirements

• Interviews and discussions with potential users

• Documents that describe competing products

• System requirements specification

• Problem reports and enhancement requests

• Market research

• Observing users

• Scenario analysis of user tasks

January 27, 2009 6

User classes

How users differ:

• Their business domain or application,

• What they use the product for, the business processes they
perform

• The frequency with which they use the product, their
computer expertise

• Geographic location

• Access privileges

n.b. Users do not need to be human

January 27, 2009 7

Finding user representatives

• Group users appropriately

• Diversity

• Representative

• How to get user input: direct involvement in project, focus
groups, interviews, surveys

• Possible connections between users and developers
Figure 7.1 (Wie)

January 27, 2009 8

Product champion

• Wiegers uses terminology in a non-standard way
– Schach more “standard” use of terminology

• User who acts as primary interface with developers

• Collect requirements from other members of their class

⇒works with analyst to develop a unified set of requirements
for their user class

January 27, 2009 9

Product champion activities

• Planning

• Requirements

• Verification and validation

• User aids

• Change management

January 27, 2009 10

Who makes decisions ???????????????????

Vision and scope should guide the discussions

• Product champions

• Most important user classes

• Major customers

• Avoid being an arbitrator

• The customer always has a point! (but may not be right!)

Misunderstanding who makes decisions is suicide

(Political awareness of the players in decisions too!)

January 27, 2009 11

Requirements validation

• Concerned with demonstrating that the requirements define
the system that the customer really wants
– “wants” versus “needs” - what is the difference?

– what about “remote” customers
• who are they, what do they want, what are their requirements?

– no real contract here, or is there?

• Requirements error costs are high so validation is very
important
– Fixing a requirements error after delivery may cost up to 100 times

the cost of fixing an implementation error

• Prototyping (discussed later) is an important technique of
requirements validation

January 27, 2009 12

Hearing the Voice of the Customer

• Develop a set of detailed descriptions of how the system
will be used -- User Scenarios

• Control complexity by grouping the users/tasks into Use
Cases that describe units of functionality that have value

• Document your interviews, understand thought processes,
and underlying logic -- refine, refine, refine
– How will you structure your questions, the process?

• Ref Gause & Weinberg

January 27, 2009 13

Hearing the Voice of the Customer:
User Scenarios

• A User Scenario is a concrete set of actions describing
how a user will achieve a particular goal

• Developing scenarios:
– open ended questions to understand users current process

– inquire about exceptions and difficulties

– what would you need to know to do their job successfully

• User Scenarios
– Identify the different types of users

– Observe users and develop a detailed description of what
functionality the system provide them

– Develop concrete examples of the future system in use

January 27, 2009 14

Documenting user requirements: Use Cases

• Use Cases
– A set of abstract descriptions capturing all the behaviors of the

system

– Defines the systems boundaries

• Refine for errors and exceptions

• Validate

January 27, 2009 15

Use Case Diagrams: Actors

• A use case describes a sequence of interactions between a
system and an external “actor” that results in the actor
accomplishing a task that results in a benefit

actor

• Person

• Software system

• Hardware system

January 27, 2009 16

actor

Task

Use Case Diagrams are about system function but
begin with actors

• Actor = a role that a user plays with respect to the system
– not a 1-1 relationship with actual people or things (other systems

or system components) or organizations

– carry out use cases

• Typically easier to determine actors before use cases

• Use cases are about system functionality, actors allow you
to track who uses what functionality

January 27, 2009 17

Example: A small regional airline wants a system for
scheduling flights and making reservations

• Automated food ordering system (not a person!)

• Customer service representative

• Administrator to set up and modify the airlines flight
schedule

Actors:

January 27, 2009 18

Example: A small regional airline wants a system for
scheduling flights and making reservations

• Administrator to set up and modify the airlines flight
schedule
– enter airports

– flight descriptions

– scheduled flights

• Customer service representative
– making/changing reservations

– deleting reservations

• Automated food ordering

January 27, 2009 19

Use Case Diagrams:
Making/modifying a reservation, normal course

Customer
Service

Representative

Making a
reservation

• Obtain itinerary

• Retrieve possible flights

• Enter reservation

• Seating assignment

• Meals? Get special requests

• Confirm with customer,
confirmation #

January 27, 2009 20

Use Case Diagrams:
Making/modifying a reservation, alternative course

Customer
Service

Representative

Modifying a
reservation

• Get confirmation number

• Obtain itinerary

• Retrieve possible flights

• Enter reservation

• Seating assignment

• Meals? Get special requests

• Confirm with customer,
confirmation #

January 27, 2009 21

Modifying a reservation must include obtaining the
itinerary <<include>>

• When travel

• Where travel

• # of travelers

Customer
Service

Representative

Modifying a
reservation

Obtaining
itinerary

<<Includes>>

January 27, 2009 22

Modifying a reservation may include obtaining the
method of payment <<extends>>

• Type of credit
card

• Card #

• Expiration date

• …

Customer
Service

Representative

Modifying a
reservation

Payment
<<Extends>>

January 27, 2009 23

actor

Task

Guidelines for Use Case Diagrams

• Avoid too many use cases
– group logically related tasks, multiple scenarios

– the primary scenario is the normal course of events

– other scenarios are alternative courses

• Identify actors and roles first, then functionality or
business processes

• focus on specific scenarios

January 27, 2009 24

Use Case documentation

• Use Case name: Making/modifying a reservation

• Participating Actor: Customer service representative

• Pre-condition: Appropriate flights are available

• Flow of events: …

• Post-condition: Reservation confirmed in system

• Special requirements: Ability to handle standard types of
credit cards including …

January 27, 2009 25

Scenarios and Use Cases: Summary

• Identify types of users and User Scenarios

• Review with users for exceptions and special
circumstances

• Use Cases (abstraction)
– identify Actors

– functionality achieves a discrete goal

• Use cases provide a mechanism to for documentation and
refinement

• Review with users

• Validate

January 27, 2009 26

Requirements checking

• Validity: Does the system provide the functions which best
support the customer’s needs?

• Consistency: Are there any requirements conflicts?

• Completeness: Are all functions required by the customer
included?

• Realism: Can the requirements be implemented given
available budget and technology
– exploratory (vertical) fast prototypes

January 27, 2009 27

Requirements reviews

• Regular reviews should be held while the requirements
definition is being formulated

• Both client and contractor staff should be involved in
reviews

• Reviews may be formal (with completed documents) or
informal. Good communications between developers,
customers and users can resolve problems at an early stage

January 27, 2009 28

Review checks

• Verifiability: Is the requirement realistically testable?
– immediately imagine a simple test for each requirement

• Comprehensibility: Is the requirement properly
understood?
– multiple views

• Traceability: Is the origin of the requirement clearly
stated?
– boy is this important! - also record the “priority”

• Adaptability: Can the requirement be changed without a
large impact on other requirements?

January 27, 2009 29

Automated consistency checking (RSL, Fisher)

Requirements evolution

• Requirements evolve as our understanding of user needs is
developed and as the organization’s objectives change

• It is essential to plan for change in the requirements as the
system is being developed and used

January 27, 2009 31

Requirements definition/specification

• Requirements definition
– A statement in natural language plus diagrams of the services the

system provides and its operational constraints. Written for
customers

• Requirements specification
– A structured document setting out detailed descriptions of the

system services. Written as a contract between client and
contractor

• Software specification
– A detailed software description which can serve as a basis for a

design or implementation. Written for developers

Definitions and specifications

Requirements readers

The Requirements Engineering process

January 27, 2009 35

The requirements document

• The requirements document is the official statement of
what is required of the system developers

• Should include both a definition and a specification of
requirements

• It is NOT a design document. As far as possible, it should
set of WHAT the system should do rather than HOW it
should do it
– This is important, keep the requirements document inside the

“problem domain” not the “solution domain”

– OK to record design ideas, but do it separately…

January 27, 2009 36

Requirements document requirements

• Specify external system behavior
– user-visible behaviors

– black box description

• Specify implementation constraints
– what the system should NOT do

• Easy to change

• Serve as reference tool for maintenance

• Record forethought about the life cycle of the system i.e.
predict changes

• Characterize appropriate responses to unexpected events

January 27, 2009 37

• Serve as reference for testing group
– esp acceptance and system testing

• Serve as a basis for user documentation

January 27, 2009 38

Requirements for all Requirements Documentation

• Numbering consistently and meaningfully
• Use whitespace and page breaks!
• Use visual emphasis consistently and sparingly
• Always a TOC and Index
• Number all figures and tables, index them and refer to them by number
• Cross reference using tools (expect updates and changes!)
• Use TBD (and have a list of them, dated, person resp.)
• Careful when defining UI’s.

– conceptual drawings that do not create design expectations

• READ some example requirements documents (one by Wiegers,
others provided on 308 webpage - don’t slavishly copy structure but
read for understanding of purpose, really!)
– Different styles and structures can be fine if they support recording of the

requirements.)

January 27, 2009 39

Requirements document structure

• Introduction
– Describe need for the system and how it fits with business

objectives

– Document conventions

– Intended audience and overall organization

– Product scope (can ref the vision and scope document)

– References

January 27, 2009 40

• Glossary
– Define all technical terms used (and other terms that may cause

confusion)

• Overall Description
– Product Perspective (relation to other products, include its family)

– Product functions at a high level

– User Classes and Characteristics (priorities)

– Operating Environment

– Design and Implementation Constraints
• anything that limits options

– Assumptions and Dependencies

January 27, 2009 41

• External Interface Requirements : System Models
– User Interfaces

• GUI stds

• Screen layout constraints

• Standard buttons, functions or links that must appear

• Shortcuts

• Error message display standards

– Hardware Interfaces

– Software Interfaces

– Communications Interfaces

January 27, 2009 42

• System Features
– System feature X in short, simple statement

– Description and Priority

– Stimulus / Response Sequences

– Functional Requirements
• software capabilities that must be present to support the user to carry

out services provided by the feature (or perform the task in the use
case)

January 27, 2009 43

• Non-function-oriented requirements definition
– Performance Requirements

• like no. of users, throughput, load
• quantify as much as possible

– Safety Requirements
• what the system can never do
• support with cers, policies, regs and laws that affect it

– Security Requirements
– Software Quality Attributes

• specific, quantitative and verifiable as possible (?!?)

– Business rules (mandated roles)
– User documentation required (user manual OR “help”?)

January 27, 2009 44

• Other Requirements

• System Evolution
– Define fundamental assumptions on which the system is based and

anticipated changes

• Appendices
– Analysis models (if they are better done here)

– TBD list

• Index

January 27, 2009 45

Guidelines for Writing Requirements

• No algorithm guarantees success

• Common sense

• Experience with problems
– Failing and learning from it!

• this really is a big deal

• better at Cal Poly than in some other professional situation
– at least for the major lessons :-)

January 27, 2009 46

Guidelines

• Keep sentences short and clear

• Use active voice (http://staff.jccc.net/pmcqueen/Tips/voice.htm)

• Use good grammar, spelling and punctuation

• Use terms consistently as defined in Glossary

• Use common requirements statement format
– “The system shall...” followed by action verb, followed by an observable

result (external, visible, black box)

• Avoid vague, ill defined terms like
– user friendly, robust, fast, state-of-the-art, acceptable, etc.

• clarify with the customer how to measure the qualities used

• clarify if customer wants to “process” or “manage” or “support”

January 27, 2009 47

• Avoid comparative words (see “bad words” list!)
– improved, maximal, optimal

• quantify the degree of the quality desired to clarify

• Other general tips:
– Finding the right level of granularity

• write individually testable requirements
– if you can think of a small number of related test cases, that is about right

• write at consistent level of detail
• don’t write long, compound sentences (avoid “and/or, etc at all cost!)
• avoid redundancy (tradeoff between understandable, boring and x-ref)
• use tabular format where it makes sense

– if there are cases that can be broken along certain dimensions

January 27, 2009 48

Sample Requirements (Wie. p. 165 ...)

• “The product shall provide status messages at regular intervals not less
than every 60 seconds.”

• “The product shall switch between displaying and hiding nonprinting
characters instantaneously.”

• “The parser shall produce an HTML markup error report that allows
quick resolution of errors when used by HTML novices.”

• Charge numbers should be validated online against the master
corporate charge number list, if possible.”

• “The product shall not offer search and replace options that could have
disastrous results.”

January 27, 2009 49

The Data Dictionary

• Primitive data elements
– Request ID = *6 digit system-generated sequential integer,

beginning with 1, that uniquely identifies each request*

• Composition
Requested Chemical = Chemical ID

 + Quantity

 + Quantity Units

 + (Optional Vendor Name)

January 27, 2009 50

• Iteration
Request = Request ID

+ Charge Number

+ 1:10{Requested Chemical}

• Selection
– Quantity Units = [“grams” | “kilograms” | “each”]

+ *9 character text string indicating

the units associated with the quantity

of chemical requested*

