Requirements elicitation:
Finding the Voice of the Customer

Establishing customer requirements for a software system
 Identify sources of user requirements on your project
 Identify different classes of users

« (Gain access to representatives of those classes

e Agree on ultimate decision maker to resolve conflicting
VIEWS

=Need iterative process to achieve shared understanding
with users

January 27, 2009

Goal: Software Requirements Specification

e Introduction
— Product scope, need for the system and fit with business objectives

e Overall description

— high level functionality, users, environment, assumptions and
dependencies

« External interface requirements
— user, hardware, software, communications interfaces

* Functional requirements, system features
— for each system feature: description, priority, etc

« Non-functional requirements
— performance, safety, security, quality, business rules, user documentation

« Appendices: Glossary, Analysis models, TBD’s

January 27, 2009

What 1s involved 1n requirements analysis and
specification

* Precisely specifying the computing needs of an individual
or an organization

* The specification needs to be 1in a “document™ to ensure
consistency, completeness and persistence

 [nformal sections should be understandable to all who will
be affected by the “system”

— How it will affect their work

— Allows them to contribute and become “‘satisfied customers”
— In domain (user) language

Formal sections: precise enough to form a contract

January 27, 2009

Stakeholders

People and organizations
 Who will be affected by the system

 Who have direct or indirect influence on the system
requirements

January 27, 2009

Sources of requirements

« Interviews and discussions with potential users
* Documents that describe competing products

e System requirements specification

» Problem reports and enhancement requests

* Market research

* Observing users

e Scenario analysis of user tasks

January 27, 2009

User classes

How users differ:
e Their business domain or application,

* What they use the product for, the business processes they
perform

* The frequency with which they use the product, their
computer expertise

* Geographic location
* Access privileges

n.b. Users do not need to be human

January 27, 2009

Finding user representatives

* Group users appropriately
e Daiversity
* Representative

 How to get user input: direct involvement in project, focus
groups, Interviews, surveys

« Possible connections between users and developers
Figure 7.1 (Wie)

January 27, 2009

Product champion

« Wiegers uses terminology in a non-standard way

— Schach more “standard” use of terminology
« User who acts as primary interface with developers
e Collect requirements from other members of their class

= works with analyst to develop a unified set of requirements
for their user class

January 27, 2009 8

Product champion activities

* Planning

e Requirements

« Verification and validation
e User aids

e Change management

January 27, 2009

Vision and scope should guide the discussions

Product champions

Most important user classes
Major customers

Avoid being an arbitrator

The customer always has a point! (but may not be right!)

Misunderstanding who makes decisions 1s suicide

(Political awareness of the players 1n decisions too!)

January 27, 2009

Requirements validation

e Concerned with demonstrating that the requirements define
the system that the customer really wants
— “wants” versus “needs” - what is the difference?

— what about “remote’ customers

» who are they, what do they want, what are their requirements?

— no real contract here, or is there?

« Requirements error costs are high so validation 1s very
important

— Fixing a requirements error after delivery may cost up to 100 times
the cost of fixing an implementation error

* Prototyping (discussed later) 1s an important technique of
requirements validation

January 27, 2009 11

Hearing the Voice of the Customer

Develop a set of detailed descriptions of how the system
will be used -- User Scenarios

Control complexity by grouping the users/tasks into Use
Cases that describe units of functionality that have value

Document your interviews, understand thought processes,
and underlying logic -- refine, refine, refine

— How will you structure your questions, the process?
* Ref Gause & Weinberg

January 27, 2009

12

Hearing the Voice of the Customer:
User Scenarios

* A User Scenario 1s a concrete set of actions describing
how a user will achieve a particular goal

» User Scenarios
— Identify the different types of users

— Observe users and develop a detailed description of what
functionality the system provide them

— Develop concrete examples of the future system in use

* Developing scenarios:
— open ended questions to understand users current process
— 1nquire about exceptions and difficulties

— what would you need to know to do their job successfully

January 27, 2009

13

Documenting user requirements: Use Cases

e Use Cases

— A set of abstract descriptions capturing all the behaviors of the
system

— Defines the systems boundaries

» Refine for errors and exceptions

o Validate

January 27, 2009

14

Use Case Diagrams: Actors

* A use case describes a sequence of interactions between a
system and an external “actor” that results in the actor
accomplishing a task that results 1n a benefit

Q * Person
* Software system
« Hardware system

actor

January 27, 2009 15

Use Case Diagrams are about system function but
begin with actors

e Actor = arole that a user plays with respect to the system

— not a 1-1 relationship with actual people or things (other systems
or system components) or organizations

— carry out use cases
« Typically easier to determine actors before use cases

« Use cases are about system functionality, actors allow you
to track who uses what functionality

X

actor

January 27, 2009 16

Example: A small regional airline wants a system for
scheduling flights and making reservations

Actors:

e Administrator to set up and modify the airlines flight
schedule

e Customer service representative

« Automated food ordering system (not a person!)

January 27, 2009 17

Example: A small regional airline wants a system for
scheduling flights and making reservations

e Administrator to set up and modify the airlines flight
schedule
— enter airports

— flight descriptions
— scheduled flights

e Customer service representative
— making/changing reservations

— deleting reservations

* Automated food ordering

January 27, 2009 18

Use Case Diagrams:
Making/modifying a reservation, normal course

Q Making a
A reservation

Customer « Obtain itinerary
Service . . .
Representative « Retrieve possible flights

* Enter reservation
* Seating assignment
* Meals? Get special requests

* (Confirm with customer,
confirmation #

January 27, 2009

Use Case Diagrams:
Making/modifying a reservation, alternative course

Q Modifying a
A reservation

Customer e Get confirmation number
Service .
Representative « Obtain 1tinerary

e Retrieve possible flights

* Enter reservation

» Seating assignment

* Meals? Get special requests

* (Confirm with customer,
confirmation #

January 27, 2009

Modifying a reservation must include obtaining the
itinerary <<include>>

Q Modifying a
A reservation <ZIncludes>>

Obtaining
itinera
Customer Y

Service
Representative

e When travel

* Where travel
o # of travelers

January 27, 2009 21

Modifying a reservation may include obtaining the
method of payment <<extends>>

Q Modifying a
A reservation T

<<Extends>>
Customer

Service
Representative * Type of credit
card
o Card #

« Expiration date

January 27, 2009 22

Guidelines for Use Case Diagrams

« Avoid too many use cases

— group logically related tasks, multiple scenarios

— the primary scenario is the normal course of events

— other scenarios are alternative courses

» Identify actors and roles first, then functionality or

business processes

« focus on specific scenarios

O

X

actor

January 27, 2009

23

Use Case documentation

* Use Case name: Making/modifying a reservation

« Participating Actor: Customer service representative
e Pre-condition: Appropriate flights are available

* Flow of events: ...

* Post-condition: Reservation confirmed in system

e Special requirements: Ability to handle standard types of
credit cards including ...

January 27, 2009 24

Scenarios and Use Cases: Summary

 Identify types of users and User Scenarios

* Review with users for exceptions and special
circumstances

» Use Cases (abstraction)
— 1identify Actors

— functionality achieves a discrete goal

e Use cases provide a mechanism to for documentation and
refinement

» Review with users
e Validate

January 27, 2009 25

Requirements checking

e Validity: Does the system provide the functions which best
support the customer’s needs?

» Consistency: Are there any requirements conflicts?

« Completeness: Are all functions required by the customer
included?

e Realism: Can the requirements be implemented given
available budget and technology

— exploratory (vertical) fast prototypes

January 27, 2009 26

Requirements reviews

* Regular reviews should be held while the requirements
definition 1s being formulated

 Both client and contractor staft should be involved in
reviews

 Reviews may be formal (with completed documents) or
informal. Good communications between developers,
customers and users can resolve problems at an early stage

January 27, 2009 27

Review checks

« Verifiability: Is the requirement realistically testable?

— immediately imagine a simple test for each requirement

« Comprehensibility: Is the requirement properly
understood?

— multiple views

e Traceability: Is the origin of the requirement clearly
stated?

— boy 1s this important! - also record the “priority”

e Adaptability: Can the requirement be changed without a
large impact on other requirements?

January 27, 2009 28

Automated consistency checking (RSL, Fisher)

Regquiremenis
em it formal languasse

Kegquirements
P eSS0

Brouirements
prohiem pepaord

Reguiremerds
aralyser

January 27, 2009

Fequiremerts
dutabize

29

Requirements evolution

« Requirements evolve as our understanding of user needs 1s
developed and as the organization’s objectives change

« It is essential to plan for change in the requirements as the
system 1s being developed and used

Imitial Chiumnged
unlaxtanding updaxtanding
of problem of poahleam

Trmitial
require menks

Chonze
requiremenls

Time

Requirements definition/specification

« Requirements definition

— A statement in natural language plus diagrams of the services the
system provides and its operational constraints. Written for
customers

« Requirements specification

— A structured document setting out detailed descriptions of the
system services. Written as a contract between client and
contractor

« Software specification

— A detailed software description which can serve as a basis for a
design or implementation. Written for developers

January 27, 2009 31

Definitions and specifications

Reguirements definition

1. The softwamr must provele a meansof representing amd

accesang exbernul [bes created by ather tonls.

Reguirements specification

l 1 The user shoubd be provsded with faclises to define the type of
exbernal [kes.

| -2 Each external fikle type may hive an associabed tool which may be
applied by the file

I 3 Each external [ife lype may be represend as a specslic soom on

the user s display.

| = Facalsees sbhould be provedad far the iwconrepresenling an
exbernul [ile tvpe to be defined by the mer.

I 5 Whm 2 pser selects an soon representing un exterml file, the
effect of that selecizon is o apply the ool asmocialed with the bepe of

the external file to the Ole representedby the selected woon.

Requirements readers

Fequirements
definition

Fequirements
specifuation

Software
specifacut s

Clsent manayaxs
Swvstem end-users
Client engineers
Contmcbor manages
Svslem axhitecis

Svstem end-users
Clsent enginoeTs

Svslem axchitects
Softwure developers

Cleent engineers {perhaps)
Swstem axhitecls
Softwure develppers

The Requirements Engineering process

Feusahbility
siudy

Feguiremenis
analyvax

Feguremenis
defamitiom

Frusability
repint

Eeguirements
specificat ion

Svdem
models

Diehimition of
Fequiremenis

Y

Speafcalon of
FEguUiremenis

Feguirements
documenk

The requirements document

e The requirements document 1s the official statement of
what 1s required of the system developers

e Should include both a definition and a specification of
requirements

e Itis NOT a design document. As far as possible, it should
set of WHAT the system should do rather than HOW it
should do 1t

— This 1s important, keep the requirements document inside the
“problem domain” not the “solution domain”

— OK to record design ideas, but do it separately...

January 27, 2009 35

Requirements document requirements

e Specify external system behavior
— user-visible behaviors

— black box description

« Specify implementation constraints
— what the system should NOT do

e Easy to change

 Serve as reference tool for maintenance

* Record forethought about the life cycle of the system 1.¢.
predict changes

« Characterize appropriate responses to unexpected events

January 27, 2009 36

« Serve as reference for testing group

— esp acceptance and system testing

 Serve as a basis for user documentation

January 27, 2009

37

Requirements for all Requirements Documentation

« Numbering consistently and meaningfully

« Use whitespace and page breaks!

« Use visual emphasis consistently and sparingly

* Always a TOC and Index

« Number all figures and tables, index them and refer to them by number
« Cross reference using tools (expect updates and changes!)

« Use TBD (and have a list of them, dated, person resp.)

e Careful when defining UI’s.

— conceptual drawings that do not create design expectations

« READ some example requirements documents (one by Wiegers,
others provided on 308 webpage - don’t slavishly copy structure but
read for understanding of purpose, really!)

— Different styles and structures can be fine if they support recording of the
requirements.)

January 27, 2009 38

Requirements document structure

e Introduction

— Describe need for the system and how it fits with business
objectives

— Document conventions
— Intended audience and overall organization
— Product scope (can ref the vision and scope document)

— References

January 27, 2009

39

* Glossary

— Define all technical terms used (and other terms that may cause
confusion)

e Overall Description

— Product Perspective (relation to other products, include its family)

— Product functions at a high level

— User Classes and Characteristics (priorities)

— Operating Environment

— Design and Implementation Constraints
 anything that limits options

— Assumptions and Dependencies

January 27, 2009

40

« External Interface Requirements : System Models

— User Interfaces
« GUI stds
» Screen layout constraints
 Standard buttons, functions or links that must appear
 Shortcuts
» Error message display standards

— Hardware Interfaces
— Software Interfaces

— Communications Interfaces

January 27, 2009

41

« System Features
— System feature X in short, simple statement
— Description and Priority
— Stimulus / Response Sequences

— Functional Requirements

 software capabilities that must be present to support the user to carry
out services provided by the feature (or perform the task in the use
case)

January 27, 2009 42

« Non-function-oriented requirements definition

— Performance Requirements
* like no. of users, throughput, load
 quantify as much as possible

— Safety Requirements
» what the system can never do
» support with cers, policies, regs and laws that affect it

— Security Requirements

— Software Quality Attributes
 specific, quantitative and verifiable as possible (?!?)

— Business rules (mandated roles)
— User documentation required (user manual OR “help?)

January 27, 2009 43

e Other Requirements

e System Evolution

— Define fundamental assumptions on which the system is based and
anticipated changes

« Appendices

— Analysis models (if they are better done here)
— TBD list

e Index

January 27, 2009 44

Guidelines for Writing Requirements

* No algorithm guarantees success
 Common sense

e Experience with problems

— Failing and learning from it!
* this really is a big deal
* better at Cal Poly than in some other professional situation

— at least for the major lessons :-)

January 27, 2009

45

Guidelines

« Keep sentences short and clear

« Use active voice (http://staff.jccc.net/pmcqueen/Tips/voice.htm)

e Use good grammar, spelling and punctuation
« Use terms consistently as defined in Glossary

e Use common requirements statement format

— “The system shall...” followed by action verb, followed by an observable
result (external, visible, black box)

« Avoid vague, ill defined terms like

— user friendly, robust, fast, state-of-the-art, acceptable, etc.
* clarify with the customer how to measure the qualities used

« clarify if customer wants to “process” or “manage” or “support”

January 27, 2009 46

* Avoid comparative words (see “bad words” list!)
— improved, maximal, optimal
» quantify the degree of the quality desired to clarify

e Other general tips:

— Finding the right level of granularity

 write individually testable requirements
— 1f you can think of a small number of related test cases, that is about right

 write at consistent level of detail
» don’t write long, compound sentences (avoid “and/or, etc at all cost!)
 avoid redundancy (tradeoff between understandable, boring and x-ref)

 use tabular format where it makes sense
— if there are cases that can be broken along certain dimensions

January 27, 2009 47

Sample Requirements (Wie. p. 165 ...)

* “The product shall provide status messages at regular intervals not less
than every 60 seconds.”

* “The product shall switch between displaying and hiding nonprinting
characters instantaneously.”

« “The parser shall produce an HTML markup error report that allows
quick resolution of errors when used by HTML novices.”

* Charge numbers should be validated online against the master
corporate charge number list, if possible.”

« “The product shall not offer search and replace options that could have
disastrous results.”

January 27, 2009 48

The Data Dictionary

 Primitive data elements
— Request ID = *6 digit system-generated sequential integer,
beginning with 1, that uniquely i1dentifies each request™
e Composition
Requested Chemical = Chemical ID
+ Quantity
+ Quantity Units
+ (Optional Vendor Name)

January 27, 2009

49

e Jteration

Request = Request ID
+ Charge Number
+ 1:10{Requested Chemical}
e Seclection
— Quantity Units = [“grams™ | “kilograms™ | “each’]

+ *9 character text string indicating
the units associated with the quantity

of chemical requested™

January 27, 2009 50

