Current Requirements Practice Self-Assessment

This appendix contains twenty questions that you can use to calibrate your current requirements engineering practices and to identify areas to reinforce. You can download a spreadsheet to help you analyze the responses from http://www.processimpact.com/goodies.shtml. Select from the four possible responses for each question the one that most closely describes the way you currently deal with that requirements issue. If you want to quantify the self-assessment, give yourself zero points for each “a” response, 1 point for each “b,” 3 points for each “c,” and 5 points for each “d” response. The maximum possible score is 100 points. Each question refers you to the chapter in Software Requirements, 2nd Ed. by Karl E. Wiegers that addresses the topic of the question.

Don’t focus on achieving a high score, but use this self-assessment to spot opportunities to apply new practices that might benefit your organization. Some questions might not pertain to the kind of software your organization develops. Also, situations are different; not every project needs the most rigorous approaches. For example, highly innovative products with no precedent in the marketplace will have volatile requirements that evolve over time from a general product concept. Recognize, though, that informal approaches to requirements increase the likelihood of doing extensive rework. Most organizations will benefit from following the practices represented by the “c” and “d” responses.

The people you select to complete the assessment could influence the results. Watch out for respondents who, rather than describing what’s really going on in the organization, might bias their responses based on politics or on what they think the “correct” answers should be.

1. How is the project’s scope defined, communicated, and used? [Chapter 5]

a. The person who conceives the product communicates telepathically or verbally with the development group.

b. There’s a project vision statement around here somewhere.

c. We write a vision and scope, project charter, or similar document by using a standard template. All project stakeholders have access to this document.

d. We evaluate all proposed product features and requirement changes to see whether they lie within the documented project scope.

2. How are the customer communities for the product identified and characterized? [Chapter 6]

a. The developers guess who our customers will be.

b. Marketing believes that they know who the customers are.

c. Target customer groups and market segments are identified by management, from market research, and from our existing user base.

d. The project stakeholders identify distinct user classes, whose characteristics are summarized in the software requirements specification.

3. How do you obtain user input on the requirements? [Chapter 7]

a. The developers already know what to build.

b. Marketing, product management, or the users’ managers believe that they can provide the user perspective.

c. Focus groups of typical users are surveyed or interviewed.

d. Specific individuals who represent different user classes participate on the project, with agreed-upon responsibilities and authority.

4. How well-trained and how experienced are your requirements analysts? [Chapter 4]

a. They are developers or former users who have little experience and no specific training in software requirements engineering.

b. Developers, experienced users, or project managers who have had some previous exposure to requirements engineering perform the analyst role.

c. The analysts have had several days of training and considerable experience in collaborating with users.

d. We have professional business analysts or requirements engineers who are trained and experienced in interviewing techniques, the facilitation of group sessions, and technical writing. They understand both the application domain and the software development process.

5. How are the system requirements allocated to the software portions of the product? [Chapter 17]

a. Software is expected to overcome any shortcomings in the hardware.

b. Software and hardware engineers discuss which subsystems should perform which functions.

c. A system engineer or an architect analyzes the system requirements and decides which ones will be implemented in each software subsystem.

d. Portions of the system requirements are allocated to software subsystems and traced into specific software requirements. Subsystem interfaces are explicitly defined and documented.

6. What techniques are used to understand the customer’s problem? [Chapter 7]

a. Our developers are smart; they understand the problem fine.

b. We ask users what they want, and then we build it.

c. We talk with users about their business needs and their current systems and then we write a requirements specification.

d. We watch users perform their tasks, model their current work processes, and learn what they need to do with the new system. This shows us how parts of their business process might be automated and gives us ideas about what software features would be most valuable.

7. What approaches are used to identify all specific software requirements? [Chapters 7 and 8]

a. We begin with a general understanding, write some code, and modify the code until we’re done.

b. Management or marketing provides a product concept, and the developers write the requirements. Marketing tells development if they’ve missed anything. Sometimes marketing remembers to tell development when the product direction changes.

c. Marketing or customer representatives tell development what features and functions the product should contain.

d. We hold structured requirements elicitation interviews or workshops with representatives from the different user classes for the product. We employ use cases to understand the user tasks, and we derive functional requirements from the use cases.

8. How are the software requirements documented? [Chapters 10 and 11]

a. We piece together oral history, e-mail and voice-mail messages, interview notes, and meeting notes.

b. We write unstructured narrative textual documents, or we draw use-case diagrams and class diagrams.

c. We write requirements in structured natural language at a consistent level of detail according to a standard SRS template. Sometimes we agument these requirements with some graphical analysis models using standard notations.

d. We store our requirements in a database or a commercial requirements management tool, and we store our analysis models in a CASE tool. Several attributes are stored along with each requirement.

9. How are nonfunctional requirements, such as software quality attributes, elicited and documented? [Chapter 12]

a. What are “software quality attributes”?

b. We do beta testing to get feedback about how the users like the product.

c. We document certain attributes, such as performance, usability, and security requirements.

d. We work with customers to identify the important quality attributes for each product, which we then document in a precise and verifiable way.

10. How are the individual functional requirements labeled? [Chapter 10]

a. We write paragraphs of narrative text; specific requirements are not discretely identified.

b. We use bulleted and numbered lists.

c. We use a hierarchical numbering scheme, such as “3.1.2.4.”

d. Every discrete requirement has a unique, meaningful label that is not disrupted when other requirements are added, moved, or deleted.

11. How are priorities for the requirements established? [Chapter 14]

a. All of them are important or we wouldn’t have written them down in the first place.

b. The customers tell us which requirements are most important to them.

c. All requirements are labeled as high, medium, or low priority by customer consensus.

d. To help us make priority decisions, we use an analytical process to rate the customer value, cost, and technical risk of each use case, feature, or functional requirement.

12. What techniques are used to prepare a partial solution and verify a mutual understanding of the problem? [Chapter 13]

a. None. We just build the system.

b. We build some simple prototypes and ask users for feedback. Sometimes we’re pressured to deliver prototype code.

c. We create prototypes for both user interface mock-ups and technical proofs-of-concept when appropriate.

d. Our project plans include tasks to create electronic or paper throwaway prototypes to help us refine the requirements. Sometimes we build evolutionary prototypes. We use structured evaluation scripts to obtain customer feedback on our prototypes.

13. How are the requirements validated? [Chapter 15]

a. We think our requirements are pretty good when we first write them.

b. We pass the requirements specification around to people to get their feedback.

c. The analyst and some stakeholders hold informal reviews.

d. We inspect our requirements documents and models, with participants that include customers, developers, and testers. We write test cases against the requirements and use them to validate the SRS and models.

14. How are different versions of the requirements documents distinguished? [Chapter 18]

a. The date the document is printed is generated automatically.

b. We use a sequence number—like 1.0, 1.1, and so on—for each document version.

c. We have a manual identification scheme that distinguishes draft versions from baselined versions and major revisions from minor revisions.

d. The requirements documents are stored under version control in a configuration management system, or requirements are stored in a requirements management tool that maintains a revision history for each requirement.

15. How are software requirements traced back to their origin? [Chapter 20]

a. They aren’t.

b. We know where many of the requirements came from.

c. All requirements have an identified origin.

d. We have full two-way tracing between every software requirement and some voice-of-the-customer statement, system requirement, use case, business rule, architectural need, or other origin.

16. How are requirements used as the basis for developing project plans? [Chapter 17]

a. The delivery date is set before we begin gathering requirements.We can’t change either the project schedule or the requirements.

b. We go through a rapid descoping phase to drop features just before the delivery date.

c. The first iteration of the project plan addresses the schedule needed to gather requirements. The rest of the project plan is developed after we have a preliminary understanding of the requirements. We can’t really change the plan thereafter, however.

d. We base the schedules and plans on the estimated effort needed to implement the required functionality. These plans are updated as the requirements change. If we must drop features or adjust resources to meet schedule commitments, we do so as early as possible.

17. How are the requirements used as a basis for design? [Chapter 17]

a. If we had written requirements, we would refer to them during programming.

b. The requirements documents describe the solution we intend to implement.

c. Each functional requirement is traced to a design element.

d. Designers inspect the SRS to make sure it can be used as the basis for design. We have full two-way traceability between individual functional requirements and design elements.

18. How are the requirements used as the basis for testing? [Chapter 17]

a. There’s no direct relationship between testing and requirements.

b. The testers test what the developers said they implemented.

c. We write system test cases against the use cases and functional requirements.

d. Testers inspect the SRS to make sure the requirements are verifiable and to begin their test planning. We trace system tests to specific functional requirements. System testing progress is measured in part by requirements coverage.

19. How is a software requirements baseline defined and managed for each project? [Chapter 18]

a. What’s a “baseline”?

b. The customers and managers sign off on the requirements, but development still gets a lot of changes and complaints.

c. We define an initial requirements baseline in an SRS, but we don’t always keep it current as changes are made over time.

d. The requirements are stored in a database when an initial baseline is defined. The database and SRS are updated as requirements changes are approved. We maintain a change history for each requirement once it’s baselined.

20. How are changes to the requirements managed? [Chapter 19]

a. Uncontrolled changes creep into the project whenever someone has a new idea or realizes that they forgot something.

b. We discourage change by freezing the requirements after the requirements phase is complete, but informal change agreements are still made.

c. We use a defined format for submitting change requests and a central submission point. The project manager decides which changes to incorporate.

d. Changes are made according to our documented change-control process. We use a tool to collect, store, and communicate change requests. The impact of each change is evaluated before the change control board decides whether to approve it.
Current Requirements Practice Self-Assessment
Page 6

