
CSC 402, Requirements Engineering

1

CSC 402
Requirements Engineering

Fall Quarter, 2005

Clark S. Turner

CSC 402, Requirements Engineering

2

Administration
• Instructor

– Clark S. Turner
• Required Books

– Wiegers, Software
Requirements

– Jackson, Software
Requirements and
Specifications

– Yourdon, Death March
• Other References

– Gause and Weinberg, Software
Requirements

– Weinberg, The Psychology of
Computer Programming

• Office: 14-211
– phone (805) 756 6133
– Hours (tentative):

€ Monday 1:10 pm - 3 pm
€ Friday 12:10 pm- 3 pm

• Prerequisites
– permission of instructor

€ 205, 206, 305 (recommended!)
• Course website at:

– www.csc.calpoly.edu/~csturner
– course details and lecture slides

€ updates mayl be weekly

CSC 402, Requirements Engineering

3

Basic Overview of the Course

• We’re going to elicit requirements
– from a “rea”l customer: Trimble

€ anyone in here experienced with GPS?
€ the project involves customer interface with proprietary boards

• some closed source
• IP issues: expect an agreement and NDA’s

– we will have to be security conscious
– we are at the edge of a real project - “proof of concept” prototype at the least
– teams each need to initiate an agreement between members

• We’ll form 5 teams (of 5 or 6 people)
– with a manager, and other job titles

€ all responsible for the work products (evaluations of personal effort)
• The course is about process and product:

– our final deliverable is a Requirements Specification (to give to 405)
€ we also plan a basic architecture

CSC 402, Requirements Engineering

4

Basics (continued)

• This course requires personal responsibility
• This course requires teamwork, interpersonal skills
• This course requires clear, concise, precise writing
• There will be a steady workload

– your process will determine the amount of pain :-)
€ DO read Yourdon “Death March” cover to cover (early!)

• It is a real project with real customers
– and all that entails: the customers do NOT know all the answers

€ neither will I
– we’re all in this together, ideally for the coming 3 terms

• We expect to be flexible but to create some working product

CSC 402, Requirements Engineering

5

Basics (continued)

• Evaluation will be wholistic, based on a large picture
– quality of deliverables
– presentations and reviews
– team performance

€ self evaluation and team evaluation of each member’s performance
€ team dynamics are very, very important

– homework
– final exam
– final team interview with instructor

• I expect to give “A’s” but it will take serious committment

CSC 402, Requirements Engineering

6

How to Use a Textbook

• Look at front and back covers
• Read Preface, Intro
• Review TOC, and look for glossary and index
• Ask questions

– what is the pedigree of the author?
– why did the author write this book?
– why did the instructor choose this book?
– what can I actually expect to get from this book?

CSC 402, Requirements Engineering

7

My Background

• Mathematics - pure theory
• Law - contracts
• Requirements analysis at UC Irvine

– worked on TCAS for FAA
– worked on Therac-25 case with FDA
– dissertation says that you can’t objectively tell the difference between

design and implementation for code
€ continuing work in the area of software code defects involved in personal

injury:
• failure to satisfy specifications
• specifications that take unreasonable risks with human lives

CSC 402, Requirements Engineering

8

The Basic Definition of our Work

• Software Engineering is...
– the study of software process, software development principles,

methods and tools
€ requirements elicitation and analysis
€ requirements and design notations
€ implementation strategies
€ testing methods
€ maintenance techniques
€ management strategies

– the production of quality software, delivered on-time, within budget,
and satisfying users’ needs

Find other definitions of “software engineering”

CSC 402, Requirements Engineering

9

What is a “Program” (only one of the
objects of Software Engineering…)
• A static description of a dynamic process to be instantiated

in the future (Turner)
– how strange is that?

CSC 402, Requirements Engineering

10

Why This Course Though?

• IMPORTANT PRINCIPLE: you can’t solve a problem unless
you know what the problem is…
– When stating solutions, be clear about the problem that is solved

• Why CSC 402? (why software engineering? … why
anything …
– what is the problem that needs a solution?
– how do we attempt to solve the problem?
– what are the benefits in concrete terms?
– what are the limitations of the approach?

CSC 402, Requirements Engineering

11

The problem and the response...

• Software is typically
– late
– over budget
– faulty
– hence... the “software crisis”

€ go see the “Chaos Report” referenced on my website
• Software Engineering

– software production should use established engineering principles
– history: coined in 1967 and endorsed by a NATO conference in 1968

CSC 402, Requirements Engineering

12

What type of software?

• Small single-developer projects can typically get by without
Software Engineering
– typically no deadlines, small budget (freeware), not safety-critical

• Software Engineering is required for
– large projects (100,000 lines of code and up)
– multiple subsystems
– teams of developers (often geographically dispersed)
– safety-critical systems (software that can kill people...)

CSC 402, Requirements Engineering

13

Software Engineering is still young

• Traditional engineering disciplines have been around for
hundreds, if not thousands, of years

• Software Engineering still needs
– standard definitions that make sense (check the IEEE definition of

“requirement” - I might fail you for writing that!)
– standard specification and design techniques
– formal analysis tools
– established processes

• Currently experimenting in
– techniques, notations, metrics, processes, architecture, etc.
– some success has been reported

€ and occasionally overreported (See Watts Humphrey’s work?)
– a foundation is being formed...

CSC 402, Requirements Engineering

14

What is Engineering?

• Engineering is
– sequence of well-defined, precisely-stated, sound steps, which follow

method or apply technique based on some combination of
€ theoretical results derived from a formal model
€ empirical adjustments for un-modeled phenomenon
€ rules of thumb based on experience

• This definition is independent of purpose ...
– “engineering” can be applied to many disciplines

€ however, does software have the formal models, rules of thumb...?
• Are software “engineers” employees or professionals?

– are we independent in our employ?
€ do we have obligations to society?

• go look at the Software Engineering Code of Ethics (ref on my website)

CSC 402, Requirements Engineering

15

Software Engineers require ...

• a broad range of skills
– Mathematics
– Computer Science
– Economics
– Management
– Psychology

• applied to all phases of software production

CSC 402, Requirements Engineering

16

Software economics...

• Software Production = development + maintenance
– maintenance accounts for approximately 67% of the overall costs

during the lifecycle of a software product (Boehm)
€ faster development is not always a good thing

• may result in software that is difficult to maintain
• resulting in higher long-term costs

€ any of you familiar with Xtreme programming or JIT methods?

CSC 402, Requirements Engineering

17

Lifecycle Costs (Schach data from Boehm)

Maintenance 67%

Integration
6%

Design
6%

Module
coding
5%

Module
testing
7%

Problem Def
3%

Requirements
4%

Planning
2%

CSC 402, Requirements Engineering

18

What was that?

• Can you interpret the pie chart and explain it?
– what should the chart look like?

€ what do we know about software projects in general?

• One researcher claims we’ll avoid maintenance costs by
buying new software more frequently
– we’ll avoid the “rare errors” in the short run

€ he’s in the safety-critical domain!

• What is “maintenance” anyway? Is this part of the problem
we’re looking at?
– was it a requirements failure or a change due to a new understanding

of the problem…..

CSC 402, Requirements Engineering

19

Maintenance Data

• All products undergo maintenance to account for change ...
• Three major types of maintenance

– Perfective (60.5%)
€ Changes to improve the software product

• an interesting figure!
– why is this so high???

– Adaptive (18 %)
€ Responding to changes in a product’s environment

– Corrective (17.5 %)
€ Fixing bugs...

“Real world” is constantly changing
Maintenance is a necessity

CSC 402, Requirements Engineering

20

Requirements and Design Aspects

• User needs and perceptions are difficult (impossible?) to
assess

– functionality isn’t enough
• Requirements specification is a contract with the customer
• Requirements must provide a definitive basis for testing
• Requirements is about the problem domain (Jackson)
• Design suggests a solution in the software domain

Requirements addresses the problem
domain only

Design addresses the programming
solution

CSC 402, Requirements Engineering

21

Verification and validation must
permeate the software lifecycle

Verification and Validation Aspects

• The longer a “fault” exists in software
– the more costly it is to detect and correct
– the less likely it is to be fixed correctly

€ e.g. fixing it “breaks” something else!
• BUT, think about this one! See Beizer, “Software IS Different” QW 1996

• 60-70 % of all faults detected in large-scale software
products are introduced in its specification and design

– data regarding “requirements” defects shows LOTS of problems start there.

• Thus...faults should be found early (or prevented!)
– requires specification and design V&V
– validate first description and verify each phase with respect to previous
– evaluate testability and develop test plans at each phase

CSC 402, Requirements Engineering

22

Relative cost of fixing a fault (Boehm data)

Requirements Specificaiton Planning Design Impelementation Integration Maintenance

200

30

10
4321

CSC 402, Requirements Engineering

23

Team Programming Aspects

• Reduced hardware costs afford hardware that can run large and
complex software systems – products too complex for an individual to
develop

• Most software is produced by a team of software engineers, not an
individual

– Team programming leads to interface problem between components and
communications problems between members

– Team programming requires good team organization to avoid excessive
communication (a nontrivial problem)

– Teams may be distributed geographically and temporally (even in this
class)

Team programming introduces real
communication overhead

CSC 402, Requirements Engineering

24

Software Engineering Principles

• Deal with both process and product (big issues here!)
• Applicable throughout the lifecycle
• Need abstract descriptions of desirable properties
• Same principles as other engineering disciplines (witness

Leveson)
€ is this true?

Principles

methods and techniques

methodologies and tools

process and environments

CSC 402, Requirements Engineering

25

Rigor and Formality

• Rigor is a necessary complement to creativity
– enhances understandability, improves reliability, facilitates

assessment, controls cost
• Formality is the highest degree of rigor
• Engineering = sequence of well-defined, precisely-stated,

sound steps, which follow method or apply technique based
on some combination of
– theoretical results derived from formal model
– empirical adjustments for un-modeled phenomenon
– rules of thumb based on experience

CSC 402, Requirements Engineering

26

Separation of Concerns

• Enables mastering of inherent complexity
• Allows concentration on individual aspects

– product features: functions, reliability, efficiency, environment, user
interface, etc.

– process features: development environment, team organization,
scheduling, methods,

– economics and management
• Concerns may be separated by

– time (process sequence)
– qualities (e.g., correctness vs. performance)
– views to be analyzed separately (data vs. control)
– components

• Leads to separation of responsibility
• Sometimes an intuitive exercise to separate concerns

CSC 402, Requirements Engineering

27

 aspects of modules in isolation
 overall characteristics of integrated system

bottom-up
top-down

Modularity and Decomposition

• Complex system divided into modules
• Modular decomposition allows separation of concerns in two

phases

• Modularity manages complexity, fosters reusability, and
enhances understandability
– composibility vs. decomposibility
– high cohesion and low coupling quality metrics

€ for great discussion see Perrow, “Normal Accidents”

CSC 402, Requirements Engineering

28

Abstraction

• Identify important aspects and ignore details
• Abstraction depends on the purpose or view
• Models are abstractions of reality

– what does this really mean?
• Abstraction permeates software development

– from requirements to code
– from natural language descriptions to mathematical models
– from products to process

• One specification but many realizations

CSC 402, Requirements Engineering

29

Anticipation of Change
• Constant change is inevitable in large software systems

– software repair & error elimination
– evolution of the application (users get a new view via the app)
– evolution of the social order (business and legal requirements)

• Identify likely changes and plan for change
– software requirements usually not entirely understood
– users and environments change
– also affects management of software process

• Maintenance is process of error correction and modification to reflect
changing requirements
– regression testing with maintenance
– configuration management of versions

• Is this one of the distinctions from other standard Engineering
disciplines?

CSC 402, Requirements Engineering

30

Generality

• Focus on discovering more general problem than the one at
hand
– fosters potential reuse
– facilitates identification of OTS solution

• Trade-offs between initial costs vs. reuse savings
• General-purpose, OTS products are general trend in

application domains
– standard solutions to common problems
– how far can this be taken?

CSC 402, Requirements Engineering

31

Incrementality

• Step-wise process with successively closer approximations
to desired goal

• Identify and “deliver” early subsets to gain early feedback
– fosters controlled evolution

• Incremental concentration on required qualities
• Intermediate deliverables may be prototypes
• Requires careful configuration management and

documentation

CSC 402, Requirements Engineering

32

Sample Software Qualities

• Correctness
• Reliability
• Robustness
• Performance
• Usability
• Testability
• What the heck do these terms mean?

– what are the relationships between these qualities?
– what about safety? Is this a property of software itself?

€ Is it subsumed under “reliability”???
• See Leveson, Safeware

CSC 402, Requirements Engineering

33

Uniqueness of Software

• What are we dealing with?
– The stuff doesn’t “wear out” (but does exhibit a bathtub curve …)
– The stuff has no “tolerance” - it is binary
– The stuff weighs nothing, and you can’t really “see” it.
– It is very plastic, we can always “change” it in place

€ try that with your automobile!
• Why don’t other engineering principles apply?

– For example, statistical reliability methods?
€ No mean value theorem applies
€ No accurate user profile or operational distribution

– So, when we test, what do we find out about software?
€ Can’t tell for sure if our software is good or not.

CSC 402, Requirements Engineering

34

Get Your Own Definitions

• Requirement
• Engineering

– including the purpose for it!
• Process

– See Osterweil’s “Software Processes are Software Too”
• Tools
• Methods
• Design
• Function

– distinguish “feature”

CSC 402, Requirements Engineering

35

Readings

• Wiegers, Part 1 (Ch 1 - 4 inclusive)
• Read Jackson on “Machines” and “Descriptions”
• Look over Yourdon, “Death March”

CSC 402, Requirements Engineering

36

Written Homework

• Create your resume for this course today in lab:
– experience, relevant classes (gpa?), other relevant facts, email

€ you’ll be “hired” on the basis of this resume. Make it 1 page please
– management candidates: I will choose managers

€ we’ll need 5 or maybe 6 managers for as many teams

CSC 402, Requirements Engineering

37

Journal Creation
• Begin your Journal in good quality loose-leaf notebook so that you can

use dividers
– Keep space (by divider or a separate journal) for your team notes, copies of

assignments, documents, sketches, and other things relevant to the project.

• I recommend that you begin with working definitions, one per page, with
room to refine as the project progresses:

€ Software Engineering
€ Engineering (find one that emphasizes the social aspects!)
€ Requirement
€ Design (to distinguish the two!)
€ Tools

• analytical, software
€ Process

– (go find Osterweil’s “Software Processes are Software Too!” article and look it over at some
point.)

€ Abstraction
€ Function (versus “feature”)

CSC 402, Requirements Engineering

38

Journal (cont’d)
€ Constraint
€ Attribute
€ Preference
€ Expectation
€ Geek

• Note that the journal should be brought to each class and lab.
– purpose - record your engineering experience
– document your work and progress
– record references for use later
– prove to instructor that you’re not a slacker
– “play with” ideas (even bad ones…)

• Most every document, note and idea for the project must appear in the
journal
– please organize it well

€ I need to be able to see how good it is in order to give you the grade you deserve!

CSC 402, Requirements Engineering

39

Teams (we’ll form this or next class)

• Plan a social activity over the weekend
• Make a report, oral and summary in writing, for next week:

Monday during lab
• Produce a document due on Monday in class:

– Cover sheet for my folder containing your team documents and notes
€ what do I need to know?

• your team structure, member names, contact information
• team name on front, motto, other relevant information
• done professionally, make it “useful” to me as a manager of teams

