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Administration
• Instructor

– Clark S. Turner
• Required Books

– Wiegers, Software
Requirements

– Jackson, Software
Requirements and
Specifications

– Yourdon, Death March
• Other References

– Gause and Weinberg, Software
Requirements

– Weinberg, The Psychology of
Computer Programming

• Office: 14-211
– phone (805) 756 6133
– Hours (tentative):

€ Monday 1:10 pm - 3 pm
€ Friday  12:10 pm- 3 pm

• Prerequisites
– permission of instructor

€ 205, 206, 305 (recommended!)
• Course website at:

– www.csc.calpoly.edu/~csturner
– course details and lecture slides

€ updates mayl be weekly
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Basic Overview of the Course

• We’re going to elicit requirements
– from a “rea”l customer: Trimble

€ anyone in here experienced with GPS?
€ the project involves customer interface with proprietary boards

• some closed source
• IP issues: expect an agreement and NDA’s

– we will have to be security conscious
– we are at the edge of  a real project - “proof of concept” prototype at the least
– teams each need to initiate an agreement between members

• We’ll form 5 teams (of 5 or 6 people)
– with a manager, and other job titles

€ all responsible for the work products (evaluations of personal effort)
• The course is about process and product:

– our final deliverable is a Requirements Specification (to give to 405)
€ we also plan a basic architecture
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Basics (continued)

• This course requires personal responsibility
• This course requires teamwork, interpersonal skills
• This course requires clear, concise, precise writing
• There will be a steady workload

– your process will determine the amount of pain :-)
€ DO read Yourdon “Death March” cover to cover (early!)

• It is a real project with real customers
– and all that entails: the customers do NOT know all the answers

€ neither will I
– we’re all in this together, ideally for the coming 3 terms

• We expect to be flexible but to create some working product
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Basics (continued)

• Evaluation will be wholistic, based on a large picture
– quality of deliverables
– presentations and reviews
– team performance

€ self evaluation and team evaluation of each member’s performance
€ team dynamics are very, very important

– homework
– final exam
– final team interview with instructor

• I expect to give “A’s” but it will take serious committment
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How to Use a Textbook

• Look at front and back covers
• Read Preface, Intro
• Review TOC, and look for glossary and index
• Ask questions

– what is the pedigree of the author?
– why did the author write this book?
– why did the instructor choose this book?
– what can I actually expect to get from this book?
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My Background

• Mathematics - pure theory
• Law - contracts
• Requirements analysis at UC Irvine

– worked on TCAS for FAA
– worked on Therac-25 case with FDA
– dissertation says that you can’t objectively tell the difference between

design and implementation for code
€ continuing work in the area of software code defects involved in personal

injury:
• failure to satisfy specifications
• specifications that take unreasonable risks with human lives
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The Basic Definition of our Work

• Software Engineering is...
– the study of software process, software development principles,

methods and tools
€ requirements elicitation and analysis
€ requirements and design notations
€ implementation strategies
€ testing methods
€ maintenance techniques
€ management strategies

– the production of quality software, delivered on-time, within budget,
and satisfying users’ needs

Find other definitions of “software engineering”
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What is a “Program” (only one of the
objects of Software Engineering…)
• A static description of a dynamic process to be instantiated

in the future  (Turner)
– how strange is that?
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Why This Course Though?

• IMPORTANT PRINCIPLE: you can’t solve a problem unless
you know what the problem is…
– When stating solutions, be clear about the problem that is solved

• Why CSC 402?  (why software engineering? … why
anything …
– what is the problem that needs a solution?
– how do we attempt to solve the problem?
– what are the benefits in concrete terms?
– what are the limitations of the approach?
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The problem and the response...

• Software is typically
– late
– over budget
– faulty
– hence... the “software crisis”

€ go see the “Chaos Report” referenced on my website
• Software Engineering

– software production should use established engineering principles
– history: coined in 1967 and endorsed by a NATO conference in 1968
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What type of software?

• Small single-developer projects can typically get by without
Software Engineering
– typically no deadlines, small budget (freeware), not safety-critical

• Software Engineering is required for
– large projects (100,000 lines of code and up)
– multiple subsystems
– teams of developers (often geographically dispersed)
– safety-critical systems (software that can kill people...)
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Software Engineering is still young

• Traditional engineering disciplines have been around for
hundreds, if not thousands, of years

• Software Engineering still needs
– standard definitions that make sense (check the IEEE definition of

“requirement” - I might fail you for writing that!)
– standard specification and design techniques
– formal analysis tools
– established processes

• Currently experimenting in
– techniques, notations, metrics, processes, architecture, etc.
– some success has been reported

€ and occasionally overreported (See Watts Humphrey’s work?)
– a foundation is being formed...
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What is Engineering?

• Engineering is
– sequence of well-defined, precisely-stated, sound steps, which follow

method or apply technique based on some combination of
€ theoretical results derived from a formal model
€ empirical adjustments for un-modeled phenomenon
€ rules of thumb based on experience

• This definition is independent of purpose ...
– “engineering” can be applied to many disciplines

€ however, does software have the formal models, rules of thumb...?
• Are software “engineers” employees or professionals?

– are we independent in our employ?
€ do we have obligations to society?

• go look at the Software Engineering Code of Ethics (ref on my website)
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Software Engineers require ...

• a broad range of skills
– Mathematics
– Computer Science
– Economics
– Management
– Psychology

• applied to all phases of software production
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Software economics...

• Software Production = development + maintenance
–  maintenance accounts for approximately 67% of the overall costs

during the lifecycle of a software product (Boehm)
€ faster development is not always a good thing

• may result in software that is difficult to maintain
• resulting in higher long-term costs

€ any of you familiar with Xtreme programming or JIT methods?
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Lifecycle Costs (Schach data from Boehm)
                 

Maintenance 67%
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What was that?

• Can you interpret the pie chart and explain it?
– what should the chart look like?

€ what do we know about software projects in general?

• One researcher claims we’ll avoid maintenance costs by
buying new software more frequently
– we’ll avoid the “rare errors” in the short run

€ he’s in the safety-critical domain!

• What is “maintenance” anyway?  Is this part of the problem
we’re looking at?
– was it a requirements failure or a change due to a new understanding

of the problem…..
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Maintenance Data

• All products undergo maintenance to account for change ...
• Three major types of maintenance

– Perfective (60.5%)
€ Changes to improve the software product

• an interesting figure!
– why is this so high???

– Adaptive (18 %)
€ Responding to changes in a product’s environment

– Corrective (17.5 %)
€ Fixing bugs...

“Real world” is constantly changing
Maintenance is a necessity
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Requirements and Design Aspects

• User needs and perceptions are difficult (impossible?) to
assess

–  functionality isn’t enough
• Requirements specification is a contract with the customer
• Requirements must provide a definitive basis for testing
• Requirements is about the problem domain (Jackson)
• Design suggests a solution in the software domain

Requirements addresses the problem 
domain only

Design addresses the programming 
solution
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Verification and validation must
permeate the software lifecycle

Verification and Validation Aspects

• The longer a “fault” exists in software
– the more costly it is to detect and correct
– the less likely it is to be fixed correctly

€ e.g. fixing it “breaks” something else!
• BUT, think about this one! See Beizer, “Software IS Different” QW 1996

• 60-70 % of all faults detected in large-scale software
products are introduced in its specification and design

– data regarding “requirements” defects shows LOTS of problems start there.

• Thus...faults should be found early (or prevented!)
– requires specification and design V&V
– validate first description and verify each phase with respect to previous
– evaluate testability and develop test plans at each phase
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Relative cost of fixing a fault (Boehm data)

Requirements Specificaiton Planning Design Impelementation Integration Maintenance

200

30

10
4321



CSC 402, Requirements  Engineering

23

Team Programming Aspects

• Reduced hardware costs afford hardware that can run large and
complex software systems – products too complex for an individual to
develop

• Most software is produced by a team of software engineers, not an
individual

– Team programming leads to interface  problem between components and
communications problems between members

– Team programming requires good team organization to avoid excessive
communication (a nontrivial problem)

– Teams may be distributed geographically and temporally (even in this
class)

Team programming introduces real
communication overhead
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Software Engineering Principles

• Deal with both process and product (big issues here!)
• Applicable throughout the lifecycle
• Need abstract descriptions of desirable properties
• Same principles as other engineering disciplines (witness

Leveson)
€ is this true?

Principles

methods and techniques

methodologies and tools

process and environments
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Rigor and Formality

• Rigor is a necessary complement to creativity
– enhances understandability, improves reliability, facilitates

assessment, controls cost
• Formality is the highest degree of rigor
• Engineering = sequence of well-defined, precisely-stated,

sound steps, which follow method or apply technique based
on some combination of
– theoretical results derived from formal model
– empirical adjustments for un-modeled phenomenon
– rules of thumb based on experience
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Separation of Concerns

• Enables mastering of inherent complexity
• Allows concentration on individual aspects

– product features: functions, reliability, efficiency, environment, user
interface, etc.

– process features: development environment, team organization,
scheduling, methods,

– economics and management
• Concerns may be separated by

– time (process sequence)
– qualities (e.g., correctness vs. performance)
– views to be analyzed separately (data vs. control)
– components

• Leads to separation of responsibility
• Sometimes an intuitive exercise to separate concerns
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  aspects of modules in isolation
  overall characteristics of integrated system

bottom-up
top-down

Modularity and Decomposition

• Complex system divided into modules
• Modular decomposition allows separation of concerns in two

phases

• Modularity manages complexity, fosters reusability, and
enhances understandability
– composibility vs. decomposibility
– high cohesion and low coupling quality metrics

€ for great discussion see Perrow, “Normal Accidents”
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Abstraction

• Identify important aspects and ignore details
• Abstraction depends on the purpose or view
• Models are abstractions of reality

– what does this really mean?
• Abstraction permeates software development

– from requirements to code
– from natural language descriptions to mathematical models
– from products to process

• One specification but many realizations
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Anticipation of Change
• Constant change is inevitable in large software systems

– software repair & error elimination
– evolution of the application (users get a new view via the app)
– evolution of the social order (business and legal requirements)

• Identify likely changes and plan for change
– software requirements usually not entirely understood
– users and environments change
– also affects management of software process

• Maintenance is process of error correction and modification to reflect
changing requirements
– regression testing with maintenance
– configuration management of versions

• Is this one of the distinctions from other standard Engineering
disciplines?
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Generality

• Focus on discovering more general problem than the one at
hand
– fosters potential reuse
– facilitates identification of OTS solution

• Trade-offs between initial costs vs. reuse savings
• General-purpose, OTS products are general trend in

application domains
– standard solutions to common problems
– how far can this be taken?
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Incrementality

• Step-wise process with successively closer approximations
to desired goal

• Identify and “deliver” early subsets to gain early feedback
– fosters controlled evolution

• Incremental concentration on required qualities
• Intermediate deliverables may be prototypes
• Requires careful configuration management and

documentation
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Sample Software Qualities

• Correctness
• Reliability
• Robustness
• Performance
• Usability
• Testability
• What the heck do these terms mean?

– what are the relationships between these qualities?
– what about safety?  Is this a property of software itself?

€ Is it subsumed under “reliability”???
• See Leveson, Safeware
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Uniqueness of Software

• What are we dealing with?
– The stuff doesn’t “wear out” (but does exhibit a bathtub curve …)
– The stuff has no “tolerance” - it is binary
– The stuff weighs nothing, and you can’t really “see” it.
– It is very plastic, we can always “change” it in place

€ try that with your automobile!
• Why don’t other engineering principles apply?

– For example, statistical reliability methods?
€ No mean value theorem applies
€ No accurate user profile or operational distribution

– So, when we test, what do we find out about software?
€ Can’t tell for sure if our software is good or not.
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Get Your Own Definitions

• Requirement
• Engineering

– including the purpose for it!
• Process

– See Osterweil’s “Software Processes are Software Too”
• Tools
• Methods
• Design
• Function

– distinguish “feature”
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Readings

• Wiegers, Part 1 (Ch 1 - 4 inclusive)
• Read Jackson on “Machines” and “Descriptions”
• Look over Yourdon, “Death March”
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Written Homework

• Create your resume for this course today in lab:
– experience, relevant classes (gpa?), other relevant facts, email

€ you’ll be “hired” on the basis of this resume.  Make it 1 page please
– management candidates: I will choose managers

€ we’ll need 5 or maybe 6 managers for as many teams
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Journal Creation
• Begin your Journal in good quality loose-leaf notebook so that you can

use dividers
– Keep space (by divider or a separate journal) for your team notes, copies of

assignments, documents, sketches, and other things relevant to the project.

• I recommend that you begin with working definitions, one per page, with
room to refine as the project progresses:

€ Software Engineering
€ Engineering (find one that emphasizes the social aspects!)
€ Requirement
€ Design (to distinguish the two!)
€ Tools

• analytical, software
€ Process

– (go find Osterweil’s “Software Processes are Software Too!” article and look it over at some
point.)

€ Abstraction
€ Function (versus “feature”)
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Journal  (cont’d)
€ Constraint
€ Attribute
€ Preference
€ Expectation
€ Geek

• Note that the journal should be brought to each class and lab.
– purpose - record your engineering experience
– document your work and progress
– record references for use later
– prove to instructor that you’re not a slacker
– “play with” ideas (even bad ones…)

• Most every document, note and idea for the project must appear in the
journal
– please organize it well

€ I need to be able to see how good it is in order to give you the grade you deserve!
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Teams (we’ll form this or next class)

• Plan a social activity over the weekend
• Make a report, oral and summary in writing, for next week:

Monday during lab
• Produce a document due on Monday in class:

– Cover sheet for my folder containing your team documents and notes
€ what do I need to know?

• your team structure, member names, contact information
• team name on front, motto, other relevant information
• done professionally, make it “useful” to me as a manager of teams


