
Software Processes Are Software Too, Revisited:

An Invited Talk on the Most Inuential Paper of ICSE 9 �

Leon J. Osterweil

University of Massachusetts

Dept. of Computer Science

Amherst, MA 01003

USA

+1 413 545 2186

ljo@cs.umass.edu

ABSTRACT

The ICSE 9 paper, "Software Processes are Software
Too," suggests that software processes are themselves a
form of software and that there are considerable bene�ts
that will derive from basing a discipline of software pro-
cess development on the more traditional discipline of
application software development. This paper attempts
to clarify some misconceptions about this original ICSE
9 suggestion and summarizes some research carried out
over the past ten years that seems to con�rm the origi-
nal suggestion. The paper then goes on to map out some
future research directions that seem indicated. The pa-
per closes with some ruminations about the signi�cance
of the controversy that has continued to surround this
work.

Introduction

"Software Processes are Software Too." How many
times I have heard that phrase quoted back to me in
the past ten years! And how many times it has been
(sometimes amusingly) misquoted too. Often I have
been attered to have had the ICSE9 paper [15] and its
catchy title referred to as being "classic" and "seminal".
But often I have also been asked, "what does that really
mean?" The idea is, alas, still misunderstood and mis-
construed in some quarters. But amazingly, and grat-
ifyingly, the phrase is still used, and the discussion of
the idea still continues, even after ten years.

The suggestion that software, and the processes that
deal with it, might somehow be conceptually similar re-
mains a powerfully appealing one that seems to have

�This work was supported in part by the Air Force Materiel

Command, Rome Laboratory, and the Defense Advanced Re-

search Projects Agency under Contract F30602-94-C-0137.

led to a considerable body of investigation. The sug-
gestion was immediately controversial, and continues to
be argued. Subsequently I discuss why I believe this
discussion indicates a pattern of behavior typical of tra-
ditional scienti�c inquiry, and therefore seems to me to
do credit to the software engineering community.

But what of the (in)famous assertion itself? What does
it really mean, and is it really valid? The assertion grew
out of ruminations about the importance of orderly and
systematic processes as the basis for assuring the quality
of products and improving productivity in developing
them. Applying the discipline of orderly process to soft-
ware was not original with me. Lehman [13] and others
[18] had suggested this long before. But I was trou-
bled because I had started to see the development of a
whole new discipline and technology around the idea of
software process, and to notice the emergence of many
notions and tools that seemed eerily familiar. I was
starting to see the creation of a software process universe
parallel to the universe of notions and tools surrounding
application software development. The more I looked,
the more similarities I saw. Processes and applications
are both executed, they both address requirements that
need to be understood, both bene�t from being mod-
elled by a variety of sorts of models, both must evolve
guided by measurement, and so forth. Thus it seemed
important to suggest that software process technology
might not need to be invented from scratch (or rein-
vented), but that much of it might be borrowed from
application software technology.

I have often been reminded that application software
technology is still badly underdeveloped and that using
it as a model for software process technology might be of
dubious value. This, however, overlooks clear evidence
that, while we have not mastered application software
technology, we have, nevertheless, created a powerful
assortment of tools, principles, and techniques in this
domain. Thus, there is much to be gained from using
obvious parallels to hasten the maturation of software

1



process technology. It seemed important to suggest that
the community should look to the more traditional and
better-developed disciplines of application development
to see what might be borrowed or adapted. It seemed
clear that there were strong similarities, but likely that
there were di�erences as well. Investigation of the ex-
tent of each seemed to be in order. The ICSE 9 talk
invited community investigation of how processes and
application software are the same and how they di�er,
so that relevant �ndings, approaches, and tools of one
could be of use to the other. It has been gratifying to
see that this invitation has been taken up and that these
explorations are still ongoing.

Conversely it has been disappointing to see the way in
which the suggestion has continued to be misconstrued
in some quarters. Subsequent sections will deal with
these misconceptions in more detail, but the following
brief summary seems in order here.

Software is not simply code. Neither are software pro-
cesses. Application software generally contains code.
This suggests that software processes might also con-
tain code. Coding software processes thus seems to be
an interesting possibility. Research has borne this out.

Programming is not the same as coding, it entails the
many diverse steps of software development. Software
process programming should, likewise, not simply be
coding, but seemed to entail the many non-coding steps
usually associated with application development. Pro-
cess modelling, testing, and evolution research seems to
have borne that out.

There are many examples of application code that are
not inordinately prescriptive, authoritarian, or intoler-
able to humans (eg. operating systems). Thus, there
should be no presumption that process code must be
overly prescriptive, authoritarian, or intolerable either.
Process programs need not treat humans like robots{
unless that is the intention of the process programmer.
Process modelling and coding languages demonstrate
this.

Finally, good software code is written at all levels of de-
tail. Code contains �ne scale details, but they emerge at
lower levels, after high level code addresses larger issues.
Similarly process code contains details that are nested
below higher abstract levels. Process code, like applica-
tion code, can demonstrate that precise implementation
of broader notions in terms of lower level engineering de-
tails. Contemporary process coding languages demon-
strate this too.

The following section summarizes some research that
suggests continued and broadened research into these
issues.

Parallels Between Software Processes and Appli-

cation Software

Much work seems to demonstrate the existence of sig-
ni�cant parallels between software processes and appli-
cation software, although not all of this work was in-
tended to do so. This section briey surveys what has
been learned.

Process Modelling

There has been a great deal of study of how well var-
ious application software modelling formalisms model
software processes. For example, Petri Nets [1], [5], Fi-
nite State Machines [6], [11], and data ow diagrams [19]
have been used to model software processes. These ac-
tivities have clearly demonstrated that application soft-
ware modelling approaches can be strong aids in con-
ceptualizing processes, in helping people to communi-
cate about processes and collaborate in their execution,
and in raising intuition about processes.

As with application software modelling, di�erent types
of process models are good for di�erent things. Petri
Net models, for example, are quite useful in elucidat-
ing parallelism and concurrency, but are less useful in
modelling artifacts. Petri Nets process models seem to
have very similar properties. They help to identify par-
allelism in processes, but have generally required aug-
mentation in order to e�ectively elucidate the ow of
software artifacts through processes. Other similar ex-
amples could readily be pointed out.

In general, models, by their nature, abstract away de-
tails in order to focus on speci�c narrow issues, which
are thereby made correspondingly clearer and more
vivid. Thus, Petri Net models depict parallelism clearly
in part because depictions of other less relevant details
are speci�cally omitted. Thus, any particular model
should be expected to be useful in some contexts, but
less helpful in others. To support understanding of var-
ious aspects of a software product di�erent models are
generally needed. Thus, a number of modelling systems
(eg. [6]) support the development and coordination of
multiple models of application software. Experience in
the software process domain has been similar. State-
mate was used as a process modelling tool [11], and its
support for multiple models was useful precisely because
the di�erent models supported understanding and rea-
soning from a variety of aspects. In the application soft-
ware domain there is a growing understanding of which
modelling tools and formalisms best elucidating which
issues. We expect similar understandings to emerge in
the software process domain.

But, as with application software modelling, it has also
become clear in process modelling that there are rea-
sons why models, even multiple models, are sometimes
inadequate. The very lack of certain types of details



in models means that models inevitably lack speci�cs
that can be very important. In addition, many mod-
elling formalisms (eg. graphical models) are based upon
weak and shallow semantics. Because of this it is usu-
ally impossible or unsafe to reason about such models.
Models expressed in a formalism with a weak seman-
tic base may convey an intuitive impression, but they
usually cannot support precise, reliable reasoning. For
example, many modeling notations (especially graphical
notations) can indicate parallel activities, but o�er no
semantics for de�ning the precise nature of the paral-
lelism. This lack of semantics leaves human interpreters
free to suppose whatever form of parallelism they like.
Inevitably this leads di�erent interpreters to di�erent
conclusions about what the model represents. The re-
sult is often miscommunication and misunderstanding.
Where the intent of the model was presumably clarity,
the e�ect will have been quite the opposite. Even where
the semantics of such constructs as parallelism are in-
corporated in the modelling formalism, it is unusual for
there to be much variety in the sorts of parallelism. This
semantic sparseness usually causes such formalisms to
be inadequate to depict the full range of parallel con-
structs needed to represent the full range of parallelism
that process modelling seems to require. Thus, there
seems to be a growing understanding that models of
processes meet some needs (eg. raising one's intuition
about processes), but that there are more needs that
are unlikely to be met by single process models, or even
combinations of process models.

Process Coding

While there is good evidence that processes need to
be represented by executable code, as well as by mod-
els, as in the case of application code, it is di�cult
to draw a sharp distinction between coding languages
and modelling languages. Certain coding languages
are imprecise about the execution semantics of certain
constructs, and certain modelling languages have very
precise execution semantics. There are often disputes
about whether particular application languages should
be considered to be coding or modelling languages. The
process community has experienced similar disputes and
disagreements about process languages during the past
years.

Such disputes are unproductive. The important dis-
tinctions among these languages are the nature, depth,
and scope of the semantic details that they provide.
As noted in the previous sections, modelling formalisms
tend to o�er relatively weak, shallow, or narrow seman-
tics. Thus, while a strong modelling formalism may
support deep and reliable reasoning about a narrow as-
pect of the software it models, such formalisms are at
best helpful only in narrow contexts. When broad cate-
gories of powerful precise, reliable reasoning is required

stronger, broader semantics and greater detail are essen-
tial. In reasoning, for example, about the presence or
absence of deadlocks and race conditions in processes
it is essential for the process to be de�ned in a for-
malism that supports precise de�nition of parallelism
and shared access to data and resources. The seman-
tics needed to support such reasoning must be quite
precise and powerful, and are generally consistent with
semantics found in full coding languages, rather than
in modelling languages. Processes, like applications, at
times bene�t from the existence of codelike represen-
tations that o�er a wide range of semantic power and
de�nition detail. At some times the detail will be un-
desirable, interfering with clarity and intuition. But at
other times it will be essential as the basis for e�ective
reasoning and actual execution.

There are other reasons why it is important to reduce
software to code. Application developers know that, un-
til software has been coded, it is unknown whether the
possibly myriad models that have preceded it can actu-
ally be reduced to practice. Similarly a set of software
process models may depict an enticing view, but can
still leave open to question just how a process consis-
tent with all of those views will actually work. It is the
interplay of all of the details, both present and absent,
from all of the models that characterizes and de�nes
the actual application or process. Only a language that
can specify and interrelate all of these details can sup-
port de�nitive demonstrations of the realizability of the
desired product. In short, real code provides real assur-
ances; models mostly provide enticements.

The original ICSE 9 paper emphasized yet another rea-
son for de�ning processes in coding languages. That
paper suggested that processes should be viewed as pre-
scriptions for the synergistic coordination of the e�orts
of humans, computers, and software tools. Process code
was suggested as the vehicle for specifying the precise
details of this coordination. Because coding languages
have executable semantics, the paper suggested that
computers could execute such code and could, in do-
ing so, supervise the integration of the e�orts of people,
machines and tools.

This point has been the subject of much unfortunate
misinterpretation and caricature. Careless reading of
this point has taken it to suggest that all processes
could, or should, be reduced to computer executable
instructions. This was neither the intent nor the pro-
posal of the original paper. Indeed, the paper stated
that software development processes should refrain from
elaborating the details of how humans should carry out
their tasks. Human tasks should be represented as func-
tions or procedures for which the de�nition is omitted,
thereby leaving the human free to execute the task as
he or she sees �t. The level to which any human task



is elaborated by the process code is the choice of the
process coder, who, in doing so, speci�es the extent to
which the process is authoritarian and prescriptive, or
permissive and relaxed.

The vehicle of process code is thus not a device for dic-
tating what a human must do, but rather a vehicle for
specifying the degree to which human activities are to
be circumscribed by the de�ned process. The act of
de�ning the process by executable code does not neces-
sarily unduly restrict the human, although the nature
of the code may do so. Indeed, the JIL [23] language,
is an example of a process coding language that sup-
ports considerable latitude in the degree of speci�city
of process de�nition.

Here too, experience suggests that a wide range of pro-
cess coding languages and coding styles seem to be of
value. Less detailed process code is preferable, for ex-
ample when the process is to be performed by seasoned
experts who can exercise good judgement in devising
sequences of process steps to carry out a task. More
detailed and precise process code is of value in other
circumstances, for example in restricting and regulat-
ing the work of software developers who are novices,
or whose actions may eventually be subject to careful
scrutiny (as, for example in the case where an orga-
nization wishes to provide protection against possible
subsequent legal claims of carelessness in software de-
velopment).

As suggested above, detailed process code speci�cations
are also of particular importance in specifying how tools
and automated procedures are to be integrated into pro-
cesses, and how the activities of humans are to be coor-
dinated with them. This requires precise speci�cations
of how various software artifacts are to be fed into tools
and extracted from their outputs, precise speci�cation
of how such artifacts are to be made available to the
right humans at the right time, and how human devel-
opment artifacts are to be channeled to the right col-
leagues and tools. All of this requires a great deal of
precise speci�cation that is consistent with the levels of
detail and precision found in the executable semantics
of coding languages.

Experimental research of the past few years seems to
con�rm that coding languages are particularly adept
at expressing the speci�cs of the interactions of pro-
cess steps and software artifact operands, while mod-
elling languages tend to be particularly ine�ective at
this. Modelling languages tend to focus on either ac-
tivity or artifact modelling, thereby failing to support
the choreography of artifacts through tools and humans.
Coding languages tend to be superior in this regard.

Thus there seems to be considerable evidence that soft-
ware processes require and bene�t from both modelling

and coding for very much the same reasons that soft-
ware applications bene�t from both of these activities.

Process Evaluation

There is also considerable evidence that software pro-
cesses are amenable to evaluation using approaches that
bear important similarities to the approaches used in
evaluating application software. Indeed, the past ten
years have witnessed explosive growth in work on the
evaluation of software processes. Most of this work has
grown out of the proposal of Humphrey and his col-
leagues at the Software Engineering Institute, of the
Capability Maturity Model (CMM) [7] [16]. The aim
of the CMM is to provide an evaluation vehicle for de-
termining the quality of an organization's software de-
velopment processes. Organizational software process
evaluation is done by a variety of means, but is usu-
ally based upon questionnaire-based surveying, and by
examination of the artifacts produced by past software
development projects.

Although the CMM does not take the explicit position
of viewing software processes as software, it seems useful
for us to do so. Taking the position that an organiza-
tion has a process that it executes in order to develop
its products leads to the conclusion that such products
are reasonably viewed as the outputs of the execution
of that process. If the quality of the process is eval-
uated through examination of such outputs, then do-
ing so is essentially a testing activity. This leads us to
conclude that the CMM establishes the structure for a
process testing regimen, and that such instruments as
the CMM-based questionnaires function as process test
plans.

These observations demonstrate that testing and eval-
uation of software processes has been a prevalent ac-
tivity over the past several years, even despite the fact
that explicit process representations may not have been
available. The lack of explicit process de�nitions forces
the process evaluator to examine output artifacts, and
to take a testing-like approach to process evaluation.
From our perspective of viewing processes as software,
we suggest that this is analogous to testing quality into
the software process. Experience in such �elds as man-
ufacturing suggests that it is preferable to build quality
in, rather than test it in. Building quality into processes
seems to require the explicit representation and de�ni-
tion of the processes. We view this as yet another key
reason why processes should be precisely de�ned using
formalisms with strong semantics.

Indeed, going one step further, we observe that carry-
ing out a CMM-based evaluation or assessment is in
fact the execution of a process-testing process. As such,
this sort of process too should be amenable to speci�-
cation by process formalisms. Such formally speci�ed



process-testing processes are examples of higher-order
processes that should be developed for the evaluation
of processes and the feeding back of such evaluations as
part of larger process improvement processes. Formal
speci�cations of such higher-order processes should fa-
cilitate more precise and sure reasoning about these key
processes. These ideas are developed more fully in [14].

Process Requirements

The observed parallels between modelling, coding, and
evaluating application software and software processes
might suggest that similar parallels have been demon-
strated between application requirements speci�cation
and process requirements speci�cations. It is startling
to note that such parallels have not been demonstrated
yet due to an apparent lack of interest in studying soft-
ware process requirements.

Especially in view of the intense interest in supporting
the modelling, coding, and evaluation of processes, it
seems almost bizarre that there has been virtually no
work in supporting the speci�cation of process require-
ments. Indeed early suggestions that more attention
be focussed on process requirements sometimes brought
disbelief in the very existence of process requirements.
The enterprise of process modelling should instantly
raise in trained software engineers important questions
about the validation of such models. That, in turn
should suggest that the models are there in large mea-
sure to demonstrate that a particular process approach
is e�ective in addressing certain process problems, as
enunciated in a set of requirements.

Software processes generally have clear (albeit unstated)
performance requirements, (eg. deadlines for comple-
tion of the entire process or various of its steps). Fur-
ther, these requirements function very much in the way
that application software requirements do, often inu-
encing important choices about what steps to paral-
lelize, in which way, and to what degree. Similarly
processes often have robustness requirements, specify-
ing how processes must react to such adverse situations
as the loss of key personnel or artifacts. Replication,
redundancy, and backups are the standard application
software approaches to addressing these requirements,
and they are also process architecture approaches to
similar process requirements. Processes also have func-
tional requirements, for example speci�cations of the
range of software artifacts to be produced as the �nal
output of the process, and the nature of the required
demonstrations of internal consistency.

Despite these rather obvious types of process require-
ments, and the fact that they should function as es-
sential baselines against which to measure both process
models and process test plans, there has been virtually
no interest in developing and using process requirement

formalisms. Thus, although the parallelism between
application software requirements and software process
requirements seems apparent, there has been scant re-
search to demonstrate it. This seems to be an area that
is very much in need of considerably more investigation.

Looking Ahead

It seems increasingly clear that the weight of evidence
is supporting the hypothesis that software processes are
indeed very much like application software in many im-
portant ways. That being the case, we should expect to
be able to exploit the similarities in a number of ways.
The previous section has suggested some of these ways.
In this section we suggest some others.

Programming Key Processes

It seems clear that it is time to get on with the impor-
tant work of developing models and code of key software
development processes. There are important bene�ts to
be gained from this. Software engineering (indeed any
sort of engineering) has as two of its key objectives the
reduction of costs and the improvement of the quality of
products. Processes play a key role in both of these. As
software costs derive almost exclusively from the cost
of human labor, cost reduction must come from reduc-
tion in labor. Explicit software process representations
can be analyzed to identify needless and unproductive
human labor, and to identify process steps that might
be performed by automated devices. Both then lead
to reductions in labor costs. Further, as noted above,
quality is generally understood to be built into prod-
ucts through periodic careful testing and analysis of the
product as it evolves through the development process.
Here too, explicit process representations should be ef-
fective bases for identifying where and how to carry out
these periodic tests and analyses.

Thus, the development, demonstration, and reuse of
demonstrably superior software processes still remains
the goal that it was as enunciated in the original ICSE
9 paper. However, now, ten years later, we should
have greater assurance that this goal is achievable, and
a weight of experimentation suggesting how to pro-
ceed. We have demonstrated a variety of modelling
formalisms (largely borrowed from application software
technology). We have also begun to understand the
demanding requirements of process coding languages.
But, here application software coding languages have
proven less useful. Experimentation has demonstrated
the value of various programming paradigms, such as
the procedural programming paradigm (eg. with the
APPL/A language [22]), the rule based programming
paradigm (eg. with MSL, the Marvel Speci�cation Lan-
guage [8]), and real-time programming approaches (eg.
with Adele [2]). But this experimentation has also
shown the inadequacy of each of these by itself. Experi-
ence has shown that representing in a clear and straight-



forward way all of the details and complexities of soft-
ware processes by means of a language with executable
semantics is far more di�cult and challenging than was
expected ten years ago. Second generation languages
such as JIL [23], which enable the blending of the ben-
e�ts of various programming language paradigms, seem
to hold promise. More experimentation and evaluation
of such languages is clearly indicated.

In order for the cost and quality improvements men-
tioned above to be realized, execution engines for such
languages will have to be developed. Recent research is
leading to understandings that such engines must have
highly exible distributed architectures. The Amber
project [9], and the Endeavors project [3] o�er good
examples of such architectures. These projects should
provide encouragement to believe that the superior pro-
cess code to be written in the new generation of process
coding languages will be e�ectively executable to pro-
vide the sort of strong support needed to reduce costs
and improve quality in developed software.

Once these languages and execution engines are in place
the development of exemplary software processes should
begin. Some examples of processes that should greatly
bene�t from such encodings are: processes for collabo-
rative design, processes for integrated testing and anal-
ysis, processes for con�guration management, processes
for tracking bug �xing, and processes for e�ecting suc-
cessful reuse. Indeed, the last ten years has seen a grow-
ing awareness of the broad range of processes that are
executed in the course of developing software. As these
processes have been more clearly identi�ed, they have
become increasingly important targets for understand-
ing and improvement. Detailed encodings should sup-
port reliable analyses and detailed dynamic monitoring
of these processes that should then lead to the kinds of
deep understandings that are needed in order to e�ect
improvements reliably.

Creating a practice of software process engineering that
will lead to reliable techniques for systematic improve-
ments to processes through engineering of process pro-
gram artifacts is clearly some distance o�. But the
progress of the past ten years seems to indicate that
it is still a worthy goal, and to justify greater belief in
assertions that it is de�nitely achievable than could have
been justi�ed ten years ago.

Scienti�c Classi�cation and Comparison of Soft-

ware Processes

While most of the process technology research of the
past ten years has focussed on supporting the synthe-
sis of new processes, there has also been an important
demonstration of the use of process technology to sup-
port the analysis of existing processes. As noted above,
there has been a growing recognition of the number and

diversity of processes in use to support software develop-
ment. Thus, designing, debugging, requirements spec-
i�cation, and con�guration management have come to
be recognized as key software development processes. In
some of these areas, for example software design, there
has been a long history of suggested approaches to per-
forming the process. These suggestions have all too of-
ten taken the form of imprecise and/or incomplete prose
articles, courses, and books, often consisting largely of
examples. Attempts to compare and contrast these sug-
gested software design approaches have been reduced
to similarly informal, often anecdotal, treatments of
the various approaches. The lack of de�nitive, precise
characterizations and comparisons of these design ap-
proaches frustrates practitioners who must choose from
among them, and impedes progress towards the estab-
lishment of a scienti�c discipline of software engineering.

Regarding software design as a process that can be
expressed in precise modelling and coding formalisms
seems to help considerably. This perspective suggests
that the writings about various software design ap-
proaches might be considered to be speci�cations of re-
quirements and/or architectures of contrasting software
design processes. It further suggests that detailed mod-
els and encodings of these processes, using formalisms
that are based on precise and deep semantics, can be
bases for correspondingly precise characterizations, clas-
si�cations, and comparisons.

A series of papers published over the past �ve years
demonstrates the viability of this approach [20, 21,
17]. In these papers popular software design methods
(SDM's) are modelled using popular software process
modelling formalisms (eg. HFSP [10] and Slang [1]).
Comparison frameworks are hypothesized to guide clas-
si�cation of SDM features. A carefully de�ned SDM
comparison process is executed to extract comparison
results from the classi�cations of the models of the
SDM's. The papers demonstrate that this approach
can be used to produce classi�cation and comparison
results that agree with and extend classi�cations and
comparisons arrived at based on informal models and
comparison techniques. The precision and speci�city
of both the models and the comparison process itself
(it is a process programmed in process modelling and
coding languages) suggest that these classi�cation and
comparison results are reproducible by di�erent human
comparators.

Work in this area is just now beginning to proliferate,
and it seems that this kind of work could be most criti-
cal to fostering the maturation of software engineering.
If software engineering is to mature into an orderly dis-
cipline it seems that it must develop a core set of well-
understood, well-supported standard processes, and a
cadre of practitioners who understand what the pro-



cesses are and how to use them. Certainly the older, bet-
ter established engineering disciplines, such as Chemical
Engineering and Industrial Engineering, exemplify this
sort of use of process. In order for such a core set of
standard processes to emerge there must be a consid-
erable amount of di�erentiation and sorting out of the
processes that are currently in existence, and an orderly
way of dealing with the steady ow of new process pro-
posals, especially in such active areas as software design.

The work just described seems particularly promising
because it suggests that structures and processes can be
put in place that will serve to support standardized com-
parisons and evaluations of the processes that must form
the core of disciplined software engineering practice. It
is unfortunate that debates about the relative merits of
di�erent approaches to such key activities as software
design are currently argued in the advertising pages of
IEEE Software, rather than in the scholarly works of
IEEE Transactions on Software Engineering or ACM
Transactions on Software Engineering Methods. If our
discipline is to mature satisfactorily that must change.
The frameworks and processes suggested in the papers
referred to above are suggested initial starting points,
and it can only be hoped that the community will take
them as such and work collaboratively to develop them
into agreed upon standards. With such standards in
place it should then be possible for objective evaluators
to produce speci�cations and descriptions that charac-
terize clearly and understandably the merits of com-
peting methods. Such evaluations should also then be
usable in estimating the costs and results of applying
these methods.

This suggests a line of experimental research that fo-
cuses on performing software engineering process clas-
si�cations and comparisons, but with an eye towards
evaluating the standard classi�cation frameworks, the
standard process modelling formalisms, and the stan-
dard comparison process. Evolution of all of the above
is to be an expected outcome of this experimentation.
A steadily growing and improving stream of classi�ca-
tions, characterizations, and comparisons should also
result. This line of research seems to be converging
interestingly with research being done by the Method
Engineering community (see, eg. [4]).

Beyond Software Engineering

In examining the hypothesis that software processes are
software, there seems to be nothing particularly special
about software processes. This suggests a hypothesis
that processes in general are also software. Con�rma-
tion of that hypothesis would be of particular interest
as it would suggest that application software technol-
ogy can also help support the development and evolu-
tion of all kinds of processes. In particular it suggests
that software engineers might have something of par-

ticular value to o�er those who engineer manufactur-
ing systems, management systems, classical engineering
systems, and so forth. A variety of private conversa-
tions and preliminary investigations seem to con�rm
that these systems often have (or should have) archi-
tectures, that they are intended to satisfy understood
requirements, and that their implementations are gen-
erally on virtual machines consisting of people, devices,
and computers. In addition, these systems are usually
continuously being evaluated and evolved. All of this
suggests that they are software in the same sense in
which we believe that software processes are software.
That being the case, it suggests that software process
researchers ought to widen their sights and study the ap-
plicability of the emerging software process technology
to manufacturing, management, and allied disciplines.

Conclusions

The foregoing sections of this paper have been intended
to suggest that there are numerous technological bene-
�ts from considering software processes to be software,
and that examining them should lead to a considerable
amount of worthwhile research. But there is yet an-
other aspect of this work that seems worth remarking
upon, and that is its contribution to the scienti�c un-
derpinnings of software engineering. It was clear from
the moment I concluded the original talk at ICSE 9
that the suggestion that software processes might be
software had initiated a type of discussion that was dif-
ferent from other discussions following other papers that
I had given. The substance of the discussions and de-
bates that have followed has rarely been at the level of
technical details, but rather at more philosophical lev-
els. There were debates about whether it was seemly
or possible to use the rigorous semantics of program-
ming languages to describe what people did or should
do. There were debates about whether processes were
a subtype of application software, or vice versa. There
were debates about whether processes have a di�erent
character than applications.

The distinguishing characteristic of most of these de-
bates has been the fact that there did not, and still
does not, seem to be much possibility that these debates
and questions can be resolved de�nitively. One reason
is that there is no agreed upon de�nition of what soft-
ware is. Likewise there is no �rm agreement on what
programming is, or what a process is for that matter.
Thus, the debates and discussions that have swirled
around the original suggestion have been largely philo-
sophical, and the opinions expressed have been based
largely upon personal aesthetics. The suggestion that
software and processes are made out of basically the
same stu� sets well with some people, and not so well
with others. The suggestion implies that what we know
and can learn about one transfers to some extent over to



the other. This suggestion has obvious importance for
the technologies in these two areas, but this has been
met with skepticism and reticence in some quarters.

Skepticism, reserve, and the impossibility of de�nitive
adjudication of these questions, however, should not be
allowed to obscure what seems to be the most signi�-
cant implication of the suggestion, namely its potential
to shed some light on the nature of software itself. If it
is shown that software is highly akin to something else
about which we can have a variety of new and di�er-
ent insights, then those insights illuminate the nature
of software. Thus, in the debates about the relationship
between process and software I see the reections of a
broader debate about the nature of software. In that
software engineering purports to be a discipline devoted
to the e�ective development of software, it seems essen-
tial that we as a community have a shared view of what
software is. Debates such as these, that help lead to
that shared view, are critically important.

In his renowned book, The Structure of Scienti�c Rev-
olutions [12], the historian of science, Thomas S. Kuhn,
suggests that progress in a scienti�c discipline is discon-
tinuous, progressing incrementally within the bounds
circumscribed by the current paradigms, but then lurch-
ing forward occasionally when a new paradigm is agreed
to account better than the old paradigm for natural phe-
nomena or to provide more assistance in solving practi-
cal engineering problems. Kuhn argues that the old and
new paradigms are generally mutually incompatible and
that, therefore, it is impossible to use either to prove the
falsity of the other. Thus shifts from an older paradigm
to a newer paradigm generally take place over a period
of time during which there is considerable intellectual
ferment and philosophical dispute. If the new paradigm
is to supplant the older paradigm it will happen only
after careful research has demonstrated that the new
paradigm is more robust and successful than the old
paradigm. After the shift has occurred, the shape of
the science, its view of its problems, and the manner
of its approaches and explanations will have been sub-
stantively changed. Most practitioners will accept the
paradigm shift, but adherents to the old paradigm may
persist.

It seems just possible that what we have been witness-
ing is a slow paradigm shift to a view of software and
software development that is rooted in the centrality of
the notion of process as a �rst-class entity whose prop-
erties are very much like those of software itself. The
nature of the debates that we have been witnessing are
consistent with what would be expected if this were the
case, being essentially discussions that are based more
on aesthetics than upon the ability to perform de�ni-
tive demonstrations. As the accretion of evidence of
the power of a process-centered view of software grows it

seems conceivable that we are seeing the establishment
of a new paradigm. The preceding discussions in this
paper do seem to suggest that grasping the importance
of process, and exploiting its relation to software, does
help deal more e�ectively with important technological
and conceptual issues. Pursuing the research agenda
outlined in the previous section should go a long way
towards con�rming this suggestion or to demonstrating
its inadequacy. In either case it seems most encouraging
to observe that the intense debates and discussions of
the premise that "software processes are software too,"
seems to be quite consistent with the behavior of a re-
sponsible community of scientists doing real science. Ul-
timately this a�rmation of our growing maturity as a
scienti�c community may be the most important out-
come of the proposal and ensuing discussions.

Acknowledgments

My ideas and work on software processes has been
greatly helped and inuenced by many people, indeed
too many to mention here. The earliest impetus for
the ideas of process programming arose out of meetings
and conversations with Watts Humphrey and his team
at IBM in the early 1980's. The speci�c proposal of the
notion of process programming was honed and sharp-
ened through many conversations with Manny Lehman
at Imperial College and John Buxton at Kings College,
London in 1985 and 1986. Con�dence in the idea was
built through intense conversations with many people,
but most notably with Dennis Heimbigner. Over the
past ten years I have been fortunate to have been able to
collaborate with Stan Sutton and Dennis Heimbigner on
process programming language design and implemen-
tation and Xiping Song on software method compari-
son formalization. Numerous conversations with Dick
Taylor, Bob Balzer, Gail Kaiser, Alex Wolf, Dewayne
Perry, Mark Dowson, Barry Boehm, Wilhelm Schafer,
Carlo Ghezzi, and Alfonso Fuggetta have also shaped
this work in important ways. I would also like to thank
the (Defense) Advanced Research Projects Agency for
its support of this work, and particularly Bill Scherlis,
Steve Squires, and John Salasin for their support, even
while these ideas were formative and while they continue
to be controversial.

REFERENCES

[1] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process
modeling in-the-large with SLANG. In Proc. of the
Second International Conference on the Software
Process, pages 75 { 83, 1993.

[2] N. Belkhatir, J. Estublier, and Walcelio L. Melo.
Adele 2: A support to large software development
process. In Proc. of the First International Con-
ference on the Software Process, pages 159 { 170,
1991.



[3] G. A. Bolcer and R. N. Taylor. Endeavors: A pro-
cess system integration infrastructure. In Proc. of
the Fourth International Conference on the Soft-
ware Process, pages 76 { 85, Dec. 1996.

[4] S. Brinkkemper, K. Lyytinen, and R. J. Welke.
Method Engineering. Chapman & Hall, New York,
1996.

[5] V. Gruhn and R. Jegelka. An evaluation of FUN-
SOFT nets. In Proc. of the Second Eurpoean Work-
shop on Software Process Technology, Sept. 1992.

[6] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working en-
vironment for the development of complex reactive
systems. IEEE Trans. on Software Engineering,
16(4):403 { 414, Apr. 1990.

[7] W. S. Humphrey. Managing the Software Process.
Reading, MA:Addison-Wesley, 1989.

[8] G. E. Kaiser, N. S. Barghouti, and M. H. Sokol-
sky. Experience with process modeling in the mar-
vel software development environment kernel. In
B. Shriver, editor, 23rd Annual Hawaii Interna-
tional Conference on System Sciences, volume II,
pages 131 { 140, Kona HI, Jan. 1990.

[9] G. E. Kaiser, I. Z. Ben-Shaul, S. S. Popovich, and
S. E. Dossick. A metalinguistic approach to process
enactment extensibility. In 4th International

Conference on the Software Process (to
appear), Dec. 1996.

[10] T. Katayama. A hierarchical and functional soft-
ware process description and its enaction. In Proc.
of the 11th International Conference on Software
Engineering, pages 343 { 353, 1989.

[11] M. I. Kellner. Software process modeling support
for management planning and control. In Proc. of
the First International Conference on the Software
Process, pages 8 { 28, 1991.

[12] T. S. Kuhn. The Structure of Scienti�c Revolu-
tions. University of Chicago Press [Chicago], 1962.

[13] M. M. Lehman. The Programming Process. In IBM
Res. Rep. RC 2722, IBM Res. Center, Yorktown
Heights, NY 10594, Sept. 1969.

[14] Leon J. Osterweil. Improving the quality of
software quality determination processes. In R.
Boisvert, editor, The Quality of Numerical Soft-
ware: Assessment and Enhancement. Chapman &
Hall, London, 1997.

[15] L. J. Osterweil. Software Processes are Software
Too. In Proceedings of the Ninth International Con-
ference of Software Engineering, pages 2{13, Mon-
terey CA, March 1987.

[16] M. C. Paulk, B. Curtis, and M. B. Chrisis. Ca-
pability maturity model for software, version 1.1.
Technical Report CMU/SEI-93-TR, Carnegie Mel-
lon University, Software Engineering Institute, Feb.
1993.

[17] R. M. Podorozhny and L. J. Osterweil. The Crit-
icality of Modeling Formalisms in Software Design
Method Comparison,. Technical Report TR{96{
049, University of Massachusetts, Computer Sci-
ence Department, Amherst, MA, Aug. 1996.

[18] Potts C. (ed). Proc. of the softw. process worksh.
In IEEE cat. n. 84CH2044-6, Comp. Soc., Wash-
ington D. C., Feb. 1984. order n. 587, 27 { 35.

[19] Richard J. Mayer et al. IDEF family of methods for
concurrent engineering and business re-engineering
applications. Technical report, Knowledge Based
Systems, Inc., 1992.

[20] X. Song and L. Osterweil. Toward Objective, Sys-
tematic Design-Method Comparisons. IEEE Soft-
ware, pages 43 { 53, May 1992.

[21] X. Song and L. J. Osterweil. Experience with an
approach to comparing software design method-
ologies. IEEE Trans. on Software Engineering,
20(5):364 { 384, May 1994.

[22] S. M. Sutton, Jr., D. Heimbigner, and L. J. Os-
terweil. APPL/A: A language for software-process
programming. ACM Trans. on Software Engineer-
ing and Methodology, 4(3):221 { 286, July 1995.

[23] S. M. Sutton, Jr. and L. J. Osterweil. The design of
a next-generation process language. Technical Re-
port CMPSCI Technical Report 96{30, University
of Massachusetts at Amherst, Computer Science
Department, Amherst, Massachusetts 01003, May
1996. Revised January, 1997.


