
UNIVERSITY OF CALIFORNIA

Irvine

Software as Product: the Technical Challenges to Social
Notions of Responsibility

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy in

Information and Computer Science

by

Clark Savage Turner

Committee in charge:

Professor Debra J. Richardson, Chair

Professor John L. King

Professor David F. Redmiles

ii

Signature Page goes here

iii

Dedication

To

Yusuf Marcus Turner

and

Hannah Rose Turner

in recognition of their worth as human beings

and as wonderful children to father

an apology

If the fool would persist in his folly he would become wise.

William Blake
“Proverbs of Hell”

iv

Contents

List of Figures ___ vi

Acknowledgments ___ vii

Curriculum Vitae ___viii

Abstract of the Dissertation __ ix

Chapter One: Introduction ___ 1
Tort Law __ 2

Enter Software ___ 4

The Research Question __ 5

Contributions to Scholarship ___ 6

Overview of the Dissertation__ 7

Chapter Two: Related Work __ 9
Legal Research ___ 9

Legal Notions of Software Defects in Manufacture as Distinguished from Design ______________ 10

Software Engineering __ 11
Software Engineering Concerns for Social Expectations for Software Product Defects__________ 11
Software Engineering Notions of Software “Manufacture” ________________________________ 12

Summary of Important Points ___ 13

Chapter Three: The Law of Products Liability in Tort _____________________ 14
The Common Law ___ 15

Products Liability__ 16
Product “Defect” __ 19
Essential Characteristics of the Classes of Product Defect_________________________________ 22
Importance of the Classification___ 25
Determination of Defect Class __ 28

Summary of Important Points ___ 30

Chapter Four: Constructing Software Code ______________________________ 32
The Kinds of Software Considered Here_______________________________________ 32

Constructing the Software Product ___ 33

The Software Development Process ___ 35
Code is the Product of a Human Effort ___ 37
Process Models ___ 38
Coders Must Face Design Issues __ 44

v

Summary of Important Points ___ 47

Chapter Five: Defects in Software Source Code ___________________________ 48
Is Software Subject to the Law of Products Liability? ___________________________ 48

Personal Injury__ 48
Software Code as a “Product” or “Component”___ 49

Can the Costs of Products Liability be Easily Avoided? __________________________ 50

Research Question ___ 51

Classes of Defects that Originate in Code ______________________________________ 52
Design __ 52
Manufacture __ 54

The Classification of Software Code Defects____________________________________ 57
1. Does the “Deviation from the Norm” Test Suffice to Distinguish Code Defects? _____________ 58
2. Does a Test Against “Design Specifications” Suffice to Distinguish Code Defects? __________ 58

Summary of Important Points ___ 63

Chapter Six: Specification Insufficiency: Essence or Accident? ______________ 64
Can the “Deviation from the Norm” Test be Adapted to Software? ________________ 65

Can Software Specifications be Made Sufficient to Distinguish Defect Classes? ______ 66
Specification Insufficiency and Progress in Software Engineering __________________________ 67
A Difficulty Inherent to Software: Description as Product ________________________________ 71

More Fundamental Difficulties With Specifications _____________________________ 75

Summary of Important Points ___ 78

Chapter Seven: Conclusions and Future Work ____________________________ 79
Summary and Conclusions __ 79

Contributions of the Work __ 82

Future Work__ 84

Bibliography ___ 86

vi

List of Figures

Figure 1 - Social Risk Management ... 3
Figure 2 - Common Law Model... 15
Figure 3 - Defect Distinctions... 25
Figure 4 - Anatomy of a Case.. 27
Figure 5 - Software Production... 36
Figure 6 - Code and Fix... 38
Figure 7 - Waterfall Model.. 40
Figure 8 - Waterfall with Feedback.. 41
Figure 9 - Spiral Model ... 44
Figure 10 - Therac Code Fragment... 61
Figure 11 - Physical Systems.. 72
Figure 12 - Software.. 73
Figure 13 - Specification Detail .. 76

vii

Acknowledgments

I am fortunate to have Professor Debra Richardson for my committee chair.
Without her unwavering support and encouragement I would not have continued
my work and finished. Without her keen insights and criticisms, I would not have
finished so well.

I am deeply indebted to Professor John King for his time and patience (of several
years) in helping me to narrow my research efforts down to a reasonable scope. His
humor and his passion for his work often inspired me to continue working with my
own ideas. Professor David Redmiles provided an attentive ear and valuable
feedback when I most needed it.

A host of others provided comments and suggestions central to the outcome of this
work. David Wright McDonald discussed my work with me on a weekly basis and
provided warm friendship and useful insights. Arthur Reyes gave of his time and
his heart with his comments and encouragement. Roger Neyman of CMD
Technologies provided his insights to ground my academic vision in industrial
experience. Cem Kaner, that tireless advocate for software quality, provided early
support and access to his excellent library.

In addition, I am grateful to Lavonne C. Pineda, a Chiropractic Intern who helped
support and care for my committee chair through the challenges of working with
me.

Perhaps the biggest thanks of all go to Dr. Belinda Morrill. She has been my wife
and sparring partner through this long journey. Without her help, I might never
have realized that my only writing blocks were inside me.

Finally, thanks to my men’s group: Vivi, Doug, Brian, and Roger. Fare well.

viii

Curriculum Vitae

Clark Savage Turner

1979 B.S. in Mathematics, Kings College, Wilkes-Barre, Pennsylvania

1981 M.A. in Mathematics, Pennsylvania State University, University
Park, Pennsylvania

1986 J.D., University of Maine School of Law, Portland, Maine

1993 M.S., Information and Computer Science, University of California,
Irvine

1999 Ph.D., Information and Computer Science,
University of California, Irvine
Dissertation: “Software as Product: The Technical Challenges to
Social Notions of Responsibility”
Professor Debra J. Richardson, Irvine, Chair

PUBLICATIONS

Turner, Richardson, King, “Legal Sufficiency of Testing Processes,” Proceedings of
the 15th International Conference on Computer Safety, Reliability, and Security,
Vienna, Austria, October, 1996

Leveson, Turner, “An Investigation of the Therac-25 Accidents,” IEEE Computer,
Volume 26, Number 7, July, 1993

Kling, Turner, “The Information Labor Force,” published in Kling, Olin, Poster,
Postsuburban California: The Transformation of Orange County Since World War
II, University of California Press, 1991

Sganga, Turner, “Orange County Lawyer’s Salary Survey,” Orange County Lawyer,
September, 1991

ix

Abstract of the Dissertation

Software as Product: the Technical Challenges to Social
Notions of Responsibility

by

Clark Savage Turner

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1999

Professor Debra J. Richardson, Chair

Products liability issues are virtually certain to arise for software products in the

near future. Their resolution can have enormous impacts for the software industry.

In particular, code defects must be classified into those of design intention and those

of inadvertence in construction. The distinction between these two classes of defect

is crucial to the operationalization of current social notions of responsibility for

accidents through the law of products liability in tort. This work finds that such

distinctions depend on software specifications alone, unlike for other manufactured

products. Further, such distinctions cannot be made for arbitrary code defects. A

model of software production is developed to explain the unique nature of software

that presents this new challenge to the law. The model further demonstrates that

x

the use of specifications to distinguish the class of a code defect is a subjective

exercise. Thus, the distinctions are of little use in assignment of responsibility for

software related accidents.

1

Chapter One:

Introduction

“Cheaper, faster, safer. Choose any two!”

Homo Faber, “man, the maker.” People build things, new things that have not

existed before. Things that change the world. Designers use science, experience,

and intuition to create new artifacts with desired properties. Aircraft, automobiles,

nuclear power plants are but a few examples. The benefits to society are manifold:

cheaper, more efficient transportation, new sources of energy.

If society had little desire for such technical progress, safety might be reasonably

assured. [Pet92] Long established, safe designs could be carefully improved in tiny

increments. Verification techniques could be highly refined. Technical progress

would then be limited by the designers' ability to fully understand and predict the

behavior of their artifacts. This limitation would slow such progress to a snail’s

pace. Further, the expense involved in creating fully safe designs would limit their

usefulness, practicality and availability to large markets. This would bound the

allocation of resources devoted to technical progress. For instance, would air travel

have developed to its current state of technology (and economy) if accidents were not

to be tolerated?

2

Alas, society is unlikely to tolerate the arrest of technical progress in exchange for

complete safety. We want more, better, faster and cheaper. We are sometimes

quite willing to sacrifice a measure of safety for more performance, for more

versatility, or for economy. Many risk tradeoffs are socially acceptable, but not all

are. [Pin81]

Tort Law

The presence of risk in design artifacts has serious social consequences. A tire

blowout at high speed on a crowded freeway can result in human disaster. Such

disasters cause economic damages and hardship to the victims. Older notions of

justice would hold the artifact’s creators responsible as the “cause” of the victim’s

damages. [Wit85]

However, such a notion strictly enforced on an industry would prove too expensive

and limit efforts at technical progress. This would correspondingly limit the social

progress in transportation, medicine, energy and other fields that are enabled by

technical progress.

The law of tort, in recognition of greater social goals of progress, does not always

allocate the costs of accidents to the creators of the artifact. The goal of this area of

law is to maintain a reasonable social balance of risk and benefit by its allocation of

costs due to accidents. [Pro84] When the activity that led to the accident is socially

valued more than the risk, the creators of the artifact may externalize the cost. The

3

victim’s interests are sacrificed for the good of the greater society, and he bears the

costs alone.1 However, if the social value of the risk outweighs the benefits, the

creators of the artifact may be forced to internalize the costs of the accident by

compensation to the victim. This scheme allows for a reasoned economic advantage

to be given to designers of artifacts that promote long term social welfare. It is

illustrated by simple diagram in Figure 1 below: 2

Figure 1 - Social Risk Management

Products liability in tort deals with artifacts of design as they have been discussed

here. It implements the social risk-benefit analysis by its declaration of “defective”

artifacts, called “products,” those undeserving of social support. The legal notion of

defectiveness is therefore an operationalization of the underlying social goals of long

term welfare.

1 Church, family and other social welfare programs may ultimately spread these costs
through society.
2 This diagram is generally attributable to [NW82].

Technical Progress Social Progress

industry industry
internalizes externalizes
accident costs accident costs

4

Consider the following two basic notions of product defectiveness.

1. Defects of design intention: the normative judgments of the designer are under

scrutiny. Was the risk considered adequately, are the benefits worthwhile? A

declaration of defect is a legal conclusion based on the risk-benefit analysis.

2. Defects of manufacture: the ability to flawlessly reify design intention is at issue

here. Does the product itself embody the design intention or is it some

unplanned variation? This is not a normative issue, it is a descriptive one. A

defect in manufacture is declared based on technical, descriptive standards.

Enter Software

Software is a new artifact of design to enter the world of risk. It appears to be novel

among other design artifacts: it doesn’t break or wear out, it is not easily visualized

in physical space, it consists of machine instructions and not physical components.

It has been used to control nuclear power plant safety systems, commercial avionics,

automobile brakes and medical devices. Flaws in such software can cause or

contribute to personal injuries. For instance, in the most widely publicized software

product accident to date, the Therac-25 medical linear accelerator caused several

deaths and injuries over a two year period. An FDA investigation revealed that the

software played a significant role in the accidents. [LT93] Software designers know

that they cannot guarantee the safety of these systems, even with unlimited

resources. [Lev95] As society moves toward increased use of computer control of

5

safety systems, we should expect more software accidents and resulting lawsuits.

[Web92]

There is yet no common law that classifies defectiveness for software products, so

when lawsuits were filed in the Therac case, the parties could not reasonably

predict the outcome. Before the judge was forced to face novel legal questions about

defectiveness of software products, the suits were settled to the satisfaction of the

several victims or their survivors. No legal precedent was set.

The answers to the novel legal questions will take the form of definitions of product

defects in the software domain. They will have major economic implications for the

safety-critical software industry. If “bad” law is declared that does not accurately

reflect social goals or applies them in an irrational manner, the costs to society and

the industry can be enormous. Though common law is self-correcting, change may

be quite slow relative to the rate of change for software technology.

The Research Question

The research hypothesis for this work is that the extant legal notions of

defectiveness may be rationally applied to the software product by analogy to a

stage of production model. The analogy views coding as a part of software product

“manufacture” and necessitates the reliable identification of unintentional defects in

“construction” of code.

6

The research question is thus, “is it possible to reliably identify defects in

manufacture for software code?” The answer is, unfortunately, “no.” Software is a

unique product in that mistakes in construction cannot always be distinguished

from design intention by any currently known legal or software engineering method.

This looks like a legal question. It is. But the legal and social understandings that

lead to rational normative rules depend completely on accurate descriptions of the

software artifact. Ultimately, it is the software designers who will explain the

nature of their artifact to society and assist in the process of creating accurate

understandings and working rules to implement social goals.

Contributions to Scholarship

This dissertation makes several contributions to scholarship in software

engineering. It helps to demystify the legal obligations placed on software products

by products liability law. The notion of requirements of the “remote customer”

places legal obligations into the context of software product requirements in a

natural way. Such obligations considered as requirements enable explicit

consideration at an early stage in the development process, when the cost of defect

discovery and removal is possibly at its lowest. Software risk analysis benefits from

this work insofar as the analysis reveals the elements of expected cost for different

classes of defects. Further, a simple model of software development is described

that gives insight into the known difficulty of separating software design from

implementation.

7

Legal scholarship and the common law will also benefit from this work. Activity in

the common law court’s development of accurate and fair rules can take many years

of individual cases bringing a single issue at a time (or a very few issues) for the

court’s consideration. Part of the value of this dissertation is to bring much of the

specific contextual information to the attention of courts, researchers, expert

witnesses and attorneys before the activity begins, which can help guide the

common law to a speedier and more accurate resolution of the social obligations into

rules for software.

This dissertation is of special value in that courts must be reactive to specific

problems that arise, but this work is initiated proactively. Similarly, this work is

very general and objective in nature, it is not restricted to the particular arguments

brought by parties with specific motivations in a court case. It can be of much

broader value than individual case precedent.

Overview of the Dissertation

The chapters and the basic ideas of each chapter are outlined below:

Chapter 1: Introduction. Introduce the classification of product defects. Ask the

generalized research question and provide an answer.

Chapter 2: Related Work. Legal and Software opinions surrounding the question

are explored.

8

Chapter 3: Products Liability in Tort. Introduce the law of products liability. Give

formal details of the defect classification. Explain the essential distinctions

between the classes of defect. Criticality of the distinctions is explained.

Chapter 4: Constructing Software Code. A general description of the job of the

coder is given relative to possible software flaws. Process models are used to

illustrate the software notion of design as distinguished from coding.

Chapter 5: Defects in Software Code. Apply the law explained in chapter 3 to the

reality of the code as explained in chapter 4. Find that the defect classifications are

sometimes impossible to apply because of the nature of the software product.

Chapter 6: Analysis. Compare software production to the production of

automobiles and search for the inherent differences that might explain the failure of

the defect classifications. Present a model that explains it. Show that software

engineers' separation of design and code is a subjective exercise.

Chapter 7: Conclusions, Consequences and Future Work. Detail future directions

and questions generated in the process of this work

9

Chapter Two:

Related Work

This investigation of defects in safety-critical software products necessarily includes

related work from two main bodies of knowledge:

• Software Engineering; and,

• the Common Law of Products Liability in Tort.

The reader should notice that these two bodies of knowledge have their own

working vocabularies, and the intersection of those vocabularies is not empty. In

the coming chapters, specific definitions will be detailed. At this stage, general

notions are sufficient.

Legal Research

Law review articles going back as far as 1979 show legal concern about the injury

potential for defective software products. [Nyc79] Several scenarios of software

related injuries are posed and legal liability discussed in subsequent articles

published in the 1980’s. [Gem81] [BD81] These writers exhibited a fair

understanding of the software design artifact as understood at the time. Later

10

articles by other authors continue to rely on those early analyses and have become

somewhat dated in the maturity of the software analyses. [Mor89]

Legal Notions of Software Defects in Manufacture as Distinguished from
Design

Legal commentators exhibit a full range of opinions and reasoning about the

existence and definition of a rational distinction between defects in software design

and manufacturing. Wolpert implies that software is design and that manufacture

“[i]s simply a question of making copies onto appropriate media.” [Wol93 at 524]

Mortimer explains that, “[a] manufacturing defect occurs when products are not

produced as designed. After a system is designed, it must be encoded into a

workable program. If an error was made during data input or conversion from

source code, or if a flaw was discovered in the physical diskette or hardware, a

manufacturing defect would occur.” [Mor89 at 190] Brannigan and Dayhoff define

manufacturing defects for software so that “ordinary mistakes by programmers in

carrying out the system designer’s instructions would qualify...” They further

wonder whether a rational distinction between the defect classes exists because, “it

may be difficult to distinguish the design phase from the production phase.” [BD81

at 138] Cronin writes that “[d]esign errors....comprise the most serious class of

defects in mass-marketed computer software,” but recognizes that a sharp definition

of software “design and assembly” may be impossible, “[p]rogammer discretion

within the confines of a program’s design resembles both design and assembly...”

[Cro85 at note 124]

11

Miyaki [Miy92] is more concerned with the overarching social goals that must be

supported by any distinction. He says that although California Courts might

justifiably impose some particular definition to apply products liability to software,

they should not do so because of the adverse impact it would have on software

innovation.3 Thus, the distinction should not be made at all for software because of

larger policy reasons.

Software Engineering

Software Engineering Concerns for Social Expectations for Software
Product Defects

Software research has recently shown serious concern for the safety of software

controlled physical systems. [Lev95] [Par90] In general, the social and legal

obligations on software development are given only passing mention and are viewed

as entirely secondary concepts to the technical issues. For a typical example, see

[Lev95] and note the absence of an entry for “liability” (or other related term) in the

index. Some liability issues receive passing mention but indicate a rather naive

understanding of the field of tort law, such as [Voa97]. Voas titles his paper, “A

Crystal Ball for Software Liability,” but presents precious little information about

the actual legal requirements involved in testing to avoid liability. He claims that

software liability, “stems directly from three classes of problems: erroneous input

data (from sensors, humans, or stored files), faulty code, or a combination of the

3 This comment belies his mistaken belief that products liability is ultimately strict liability,

12

two.” [Voa97 at 31] He is, of course, referring to failure as the sole and direct

cause of liability. This is not true in all cases, so the claim is misleading. Nowhere

does he introduce or discuss the legal distinctions between defect classes and the

resultant expected cost disparities.4

Software Engineering Notions of Software “Manufacture”

First, note that the discussions of “manufacturing” within the software engineering

field commonly depend on engineering understandings of the term “manufacturing”

and are not related to the precise legal definitions to be developed in the next

chapter. Further, the term “manufacture” usually arises in the context of making

distinctions between software production and the production of other design

artifacts. I include the ideas discussed below to illustrate the software engineer’s

basic understandings of software defectiveness.

Only a few software researchers have spoken directly to the identification of defects

in the “manufacturing” of software. Parnas sees defects (errors) in software as not

statistically independent, which distinguishes them from random defects introduced

in the manufacturing of other traditional products. He goes on to identify the

compiling phase of software development as manufacturing, “in software, there are

few errors introduced in the manufacturing (compiling) phase.” [Par90 at 638]

Hamlet [Ham92] refers to software defects as mostly defects of design, where

defects in the physical machine or storage media remain to be considered as defects

a premise that is not correct. This is discussed in the next chapter.
4 This is not a criticism of his basic technical contribution to risk quantification techniques!

13

in manufacture. Leveson claims that for software, the “manufacturing phase is

eliminated from the lifecycle,” but comments that “duplication of software might be

considered to be manufacturing.” [Lev95 at 22] However, note that some software

research refers to code implementation as “construction” of the software product.

[GG75] [Som92] This notion could be analogized to product manufacture, allowing

for defects in manufacture during the coding activity.

Summary of Important Points

Both fields show some concern for the potential for software artifacts that can

threaten public safety. Legal research uniformly foresees products liability lawsuits

but does not agree on whether both classes of defect are applicable to software code.

Two authors of the early 1980’s [Gem81] [BD81] anticipate the research question for

this dissertation but do not analyze the possibilities. The software field, working

from common engineering notions of manufacturing and design, generally refers to

code as design, but also refers to the coding activity as “construction.”

In the following chapters, these possibilities will be tested against precise legal

definitions and known characteristics of a manufacturing defect.

14

Chapter Three:

The Law of Products Liability in Tort

“Safety is much too important to be left to the designers” [TWDP76]

Several terms used in this chapter have very specific legal meanings but are also

commonly used in the field of software engineering. Specific terms that may cause

confusion are:

• product

• design

• specification

• manufacture

• defect

 The terms will be defined individually as needed. They are used in this chapter

within the context of the legal framework in which problematic software will

eventually be judged.

15

The Common Law

 Products liability in tort is a part of the common law. Common law is judge-made

law, to be distinguished from legislated, statutory law. Its hallmark is an ability to

evolve with changing social conditions to meet current social needs, “a continually

more efficacious social engineering.” [Pou49] In this sense, it is self-correcting,

capable of modifying itself to adapt to dynamic circumstances. A model of the

common law process based on a standard process control model is given in figure 2

to illustrate the concepts.5

Production

Perceived

social needs

Process of

development
of various qualities

in market

human/economic

interaction

Process of Qualities

of social

"fairness"

Court system

legal complaintenforcement

Testing, analysis,

inspection

Rework,
redesign
remanagement

Econ. lossCourt

Management Management

Actuators: Sensors:Sensors:Actuators:

and development

Research

review

Appellate

Constraints defined:
What is reasonably expected

Constraint information:
What is possible, what is worthwhile

what is reasonable

product
Product

 Figure 2 - Common Law Model

 5 This model was developed to explain the common law process in [TRK96].

16

 The common law evolves on a case by case basis. When a products liability case

involving a new issue comes up, specific rules to handle the issue are developed by

application of fundamental tort principles to the concrete case at hand. The new

rules that are developed this way must satisfy the following criteria:

• incentive for increased safety at a reasonable social cost; [Hen76]

• explainable, rational, repeatable method for decisions; [Owe80] [Eis88] and,

• terminal decision process. [Eis88]

Of course, satisfaction of these criteria depend on the reality of the domain of

application as well as the precise formulation of the legal rule itself. For example,

“incentive for increased safety” and “reasonable social cost” are terms that will

derive meaning only in the domain where they are applied. The social expectations

underlying the legal rules come from the legal system, but the technical possibilities

and realities are properties of the domain of application.

Products Liability

The modern law of products liability developed from roots in negligence and

warranty causes of action. In the 1960’s strict products liability in tort developed in

response to the perceived inadequacies of negligence and contract-warranty causes

of action when applied to products of modern complexity involved in personal

17

injury.6 It was to be based on proof of product defect rather than proof of fault.

Once a product was proven defective, damages could be awarded. On the other

hand, for a negligence case, fault (unreasonable conduct) must be proved, the injury

may be merely economic in nature, and a product need not be the instrumentality of

the injury (it could be a service).

Further, products liability cases in tort are not subject to contract or license

disclaimers of liability. [Hen60] The commonly seen “limitations of liability” and

conspicuous statements negating the manufacturer’s responsibility for the behavior

of the product have no affect in a products liability case for personal injuries.

Notice also that tort law should not be confused with criminal law. Tort law is civil

in nature and does not normally result in incarceration.7 Civil cases are merely a

question of monetary damages. In fact, as long as one can afford to keep paying

damages, one may continue with tortious conduct.8

There are two basic prerequisites for any case of products liability in tort:

1. personal injuries or harm to other property must be involved, “pure”

economic damages will not support a case; [Pro84]

6 For a good historical view of the development of strict products liability, see generally
[Bir80]
7 Civil contempt citations may result in fines and punishment, but this is really another area
of law.
8 Up to the point that it becomes intentional or has the quality or reckless disregard for the
safety of others.

18

2. the instrumentality causing the injury must be considered a “product” or

a product “component;” [Pro84] provision of services will not support a

case.

The first of these prerequisites is self explanatory and depends on the facts of each

case. The second involves a legal judgment that the design artifact will be

considered subject to the law of products liability.

Products liability law is only applicable to a design artifact legally considered to be

a product or is shown to be a product component. As with the term “manufacture,”

the term “product” has specific legal meanings and is not restricted to dictionary

definitions or common understandings of the term. [Flu85] Most legal discussions

contrast “products” (to which products liability is applicable) to “services” (to which

products liability is not applicable). Each of the following factors may be used to

distinguish a “product” from a “service” for purposes of products liability in tort:

• whether the artifact has a value of its own as a tangible item;

• whether the artifact may be subject to “ownership;”

• whether defects can be corrected; and,

• whether the artifact may be mass produced and marketed.

[Mor89]

Since the law of products liability in tort is a branch of the common law, it may

evolve differently in each of the 50 states. However, the overarching principles of

19

tort law by which states’ rules are derived remain basically the same in all states.

The American Law Institute has, for some years, prepared and published a

standard text covering the basic tort principles and rules therefrom in its

Restatement of the Law series. The Restatement is often considered authoritative

for the common law and is cited by common law judges in tort cases. [Smi94]

In 1998, after several years of scholarly work and revision, the Restatement of the

Law, Third Edition, Torts, Products Liability was published. [Res98] Section One

of this text provides,

Section 1. Liability of a Commercial Seller or Distributor for
Harm Caused by Defective Products

 One engaged in the business of selling or otherwise
distributing products who sells or distributes a defective
product is subject to liability for harm to persons or property
caused by the defect.

The central legal idea that triggers liability for products liability law is therefore

product defect.

Product “Defect”

The Webster’s Ninth New Collegiate Dictionary defines defect:

1. a: an imperfection that impairs worth or utility:

SHORTCOMING [...]

2. a lack of something necessary for completeness, adequacy,

or perfection: DEFICIENCY [...]

20

In general, then, a defective product will be one that contains some imperfection

that makes it legally inadequate. This general idea has evolved through common

law decisions for some time.9

As early as the 1200’s, some forms of liability for manufacturing defects was

imposed by the law. In the 1960’s, American courts began to recognize that a

commercial seller of any product having a manufacturing defect should be strictly

liable in tort for harm caused by the defect. The liability is to attach even if the

manufacturer’s quality control in producing the defective product was reasonable!

“Due care” of the manufacturer becomes irrelevant. Liability is based completely

upon the product’s failure to satisfy the manufacturer’s own design intention. The

product is “more dangerous than it was designed to be.” [Pro84] Once the product is

shown to have caused injury, the proof of a manufacturing defect is sufficient to

result in liability.

In the late 1960’s and early 1970’s, questions of design defects began to arise when

the product in question satisfied the intended design (i.e., not a manufacturing

defect) but the design itself was unacceptably risky. In such cases, defects cannot

be judged by reference to the manufacturer’s own design standards because those

are the very standards under scrutiny. The design defect involves a social

judgment about the trade-offs necessary to determine which accident costs are more

fairly and efficiently borne by those who incur them (the victims) and which are best

21

borne by product users and consumers through internalization of the accident costs

(by the manufacturers) and having product prices reflect the relevant costs. [Pro84]

Judgment of design defectiveness is often based on the availability of a cost-

effective alternative design that would have prevented the harm. [Ban94] This is

not a strict liability standard, but one more in the nature of negligence, based on

lack of due care during the design process. [Bir80] It is a legal conclusion based on

social standards for design adequacy. Injuries may indeed be caused by a design

decision, but unlike the case of a manufacturing defect, if due care was exercised,

the manufacturer is not held liable.

The Restatement distills the above into the following description of the law:

Section 2. Categories of Product Defect

A product is defective when, at the time of sale or
distribution, it contains a manufacturing defect, is defective in
design, or is defective because of inadequate instructions or
warnings. A product:

(a) contains a manufacturing defect when the product
departs from its intended design even though all possible care
was exercised in the preparation and marketing of the
product;

(b) is defective in design when the foreseeable risks of
harm posed by the product could have been reduced or
avoided by the adoption of a reasonable alternative design by
the seller or other distributor, or a predecessor in the
commercial chain of distribution, and the omission of the
alternative design renders the product not reasonably safe;

9 For a brief historical perspective of tort and the law of products liability, see generally
[Res98]

22

(c) is defective because of inadequate instructions or
warnings when the foreseeable risks of harm posed
by the product could have been reduced or avoided
by the provision of reasonable instructions or
warnings by the seller or other distributor, or a
predecessor in the commercial chain of distribution,
and the omission of the instructions or warnings
renders the product nor reasonably safe.

This dissertation is limited in scope to analysis of the first two kinds of defects as

they relate to software.10 In general, defective warnings (the third category) are

part of the product design and this is reflected in the similarity of the legal

standard.

Essential Characteristics of the Classes of Product Defect

Commonly understood meanings of the terms “design” and “manufacture” may not

prove sufficient to distinguish the categories of defect for legal purposes. The

essential characteristics of the two categories have been defined and developed over

time by common law decisions. Since the distinction between these two classes of

defect is central to this dissertation, it is necessary to delineate the distinctions

further. Five dimensions are used to illustrate:

1. Standard Used for Comparison: Design is judged “defective” by a social

standard. The Court or jury must decide whether the design intention

reasonably balances social risks and utility. In contrast, a manufacturing defect

23

is found by comparison of the product to the manufacturer’s own technical

standards. [Pre84] If the product is defective by the manufacturer’s own

standards, it is more dangerous than it was designed to be. [Pro84]

2. Degree of Human Intention: Design defects involve conscious decisions of the

design engineers. Manufacturing defects are not the result of conscious

decisions but of inadvertence. The manufacturer knows that a certain amount

of imperfection results from the construction process, regardless of the intention

to eliminate them by quality control. [Pre84]

3. Avoidability of the Danger: Design defects may be avoided by a socially

responsible risk-utility consideration during design. Manufacturing defects

cannot be eliminated this way, they are not the result of “consideration” of

alternatives at all, but are failures in the process of construction of the product.

[Rix86]

4. Defect Visibility: Design features define the product’s functionality. Thus, any

defect in design is a consciously chosen characteristic for the product. In this

sense, the defects are “known” and “visible” to anyone who understands the

product. [Hen73] Manufacturing defects are not seen or known else they would

have been removed during quality control. They are unplanned “features” of the

product.

10 The duty to warn has been questioned about its applicability to software. Warnings must
be specific, and if a software designer knew of the specific risks, wouldn’t the software be
redesigned to reduce or eliminate the risk (as it relates to software)? See [GL81]

24

5. Consumer Participation in Risk Reduction: Some design features include

necessary risks in their beneficial use.11 In such cases, consumers must

participate in risk reduction in order to enjoy the product’s benefits.

Manufacturing defects are latent and consumers cannot generally participate in

risk reduction. [HT91]

The characteristics used to distinguish these defect categories are summarized

below in figure 3. The defect class is given at the top of the table and the conceptual

dimensions that have been used to distinguish them are given in the rows.

11 Consider the knife. Should manufacturers of knives be held liable when a consumer gets
cut by the knife? The cutting is the feature the consumer desires from the product, and is
expected to use it with care to minimize the chance of accident. This is a very simplified
analysis but does make the point.

25

 Design Manufacture

Standard used for
comparison

external, a social
standard for risk-
utility decisions

internal, the
manufacturer’s own
standard is considered

Degree of human
intention

conscious decision of
the design engineers

inadvertent, a
“mistake”

Avoidability of the
danger

avoidable by proper
risk-utility
consideration

unavoidable

Defect “visibility” visible part of
functionality, a
planned characteristic
of the product

latent, not known
before the accident (or
QC would have
rejected!)

Consumer
participation in risk
reduction

sometimes consumer
found “best” risk
avoider

not possible because
defect is latent

Figure 3 - Defect Distinctions

Importance of the Classification

Besides an interesting academic exercise, what is the importance of understanding

the distinctions in defect classes?

Perhaps most importantly, these distinctions operationalize social notions of

responsibility surrounding design artifacts that cause personal injury. The

development of innovative designs offer the possibility of technical advances that

support social progress. So that society can make decisions about when to support

design innovation and when not to, a negligence or “due care” standard is employed.

26

However, when an artifact does not embody design intention, the possibility of

social progress vanishes and the costs of accidents are to be internalized to that

activity. [Owe96]

The distinctions are also important to anyone potentially involved in such a case

because, as explained above, the different defect classes are subject to a different

legal standard of proof. For a manufacturing defect, the plaintiff-victim has a

relatively low expected cost for prosecution of the case: it is simply a matter of proof

that the product did not meet the manufacturer’s own design standards. The

defendant-manufacturer has a relatively greater expected cost for such cases since

damages are awarded simply on proof that the defect caused the harm. Due care is

no defense to such a case.

For a design defect, the plaintiff-victim has a much higher expected cost of

prosecuting the case, as it must be proved that the defendant-manufacturer did not

act reasonably given the state-of-the-art. This involves a much greater burden of

proof, proving what the state of the art provides is often a matter of disagreement

even between experts. Correspondingly, the defendant-manufacturer now has a

chance to prove that its design was sufficient even though the injury occurred (“due

care”), thus the expected cost of such cases can be lower than that for

manufacturing cases. [Pro84]

Notice that, to the extent that manufacturing cases are seen as genuinely

advantageous to victims, there will be pressure from the plaintiff’s bar to

27

characterize defects as those of manufacture whenever possible. A high level flow

chart of a products liability case is shown in figure 4 to illustrate the pertinent

concepts discussed so far:

Personal
injury caused
by software

CAUSE FAULT LIABILITY

Defect in
manufacture,
does the product
satisfy design
intention?

Yes, code more
dangerous than it
was designed to be

No.

No.

Design is
adequately
safe

Yes. Safer alternative
 design was feasible

LIABILITY for
defective product.
Developers must
internalize the costs
of these accidents

NO LIABILITY
social support
for valuable risk
taking. Costs
assessed to victim.

Potential design
defect. Is the
plan too risky?

Figure 4 - Anatomy of a Case

Once software is proved to have caused or contributed to a personal injury, either

kind of defect may be shown. The burden of proof and expected costs of prosecuting

a case motivate the plaintiff to allege a defect of manufacture. This is the first issue

to be decided, and if a manufacturing defect is identified, the plaintiff wins the

28

lawsuit.12 If the alleged defect is not one of manufacture, then defective design is at

issue. Expert testimony can now be introduced by the defendant-designer in

defense of the reasonability of the design. This defense was not available in the

manufacturing case. The determination of liability is then made respecting the

much more complex issues of design and state of the art.

Determination of Defect Class

As shown in the Restatement Third, Courts seek intended design as the marker to

determine whether there is a manufacturing defect. Where is this intended design

obtained for use by the Court in a given case? It can be that the product “deviated

in a material way from the manufacturer’s specifications or from otherwise identical

units manufactured to the same manufacturing specifications.” [Rix86] This

reveals the two basic ways that Courts actually determine this marker:

1. design specifications; and,

2. deviation from the norm.13

There is one other way to prove a product defective, that is, when it fails to perform

its “manifestly intended function.” [Res98] This is reserved for cases in which the

public has a wealth of basic experience and knowledge with the product at issue,

and expert testimony is not required because the knowledge is socially accepted as

12 In some cases, there are good reasons to go on to prove design defect in addition to
manufacturing defect, such as the availability of punitive damages. Indeed, both classes of
defect may be alleged and present in a product. [Pro84]
13 This test for manufacturing defects was so named by Justice Traynor. [Tra65]

29

universal. This is not a likely scenario for a software product for some time to come,

if ever. [Nyc79]

1. Design specifications as an expression of intended design

It is important to understand the broad usage of the word “design” as used in the

products liability context. From the viewpoint of the remote customer in society,

any choices of the manufacturer that involve foreseeable consequences for safety

would be included.

When the Court searches for the manufacturer’s intended design, a natural starting

point is internal design documentation for the product. After all, the manufacturer

often uses such documentation in its own construction and quality control efforts.

In this sense, these documents are produced precisely to exhibit the manufacturer’s

intention: a definition of what the manufacturer intended to produce.

The utility of a comparison to design specification documents depends on the

existence of a complete, consistent, correct, unambiguous, comprehensible

expression of the product design. It is to no avail if the documents are no longer

available, if product features are not traceable to their counterparts in the

specification, or if the specification is otherwise insufficient to answer the question,

“is the specification satisfied?”

30

2. Intended design in the manufacturing norm

If the specification is missing, if it is not comprehensible, if it is incorrect,

inconsistent or ambiguous, it cannot reliably be used to divine “intended design” so

that the individual product feature may be evaluated against it. Since the Court

needs to classify the potential defect in all cases that come to it, some other way is

needed to determine whether a manufacturing defect exists. The “deviation from

the norm” test compares the product in question to a number of others from the

same production run. [Tra65] If the given product defect is found in all the others,

then a defect in design is inferred. This fact gives rise to the descriptive term

generic defects, referring to those defects that affect the entire product line (by

design). [Res98] If the product feature in question does not appear in the majority

of others, then it is inferred to be one of manufacturing: an unintentional failure to

execute the design properly for that individual product.

This test is easy to understand and its genius lies in the ability to infer intended

design from some sample of products - without reference to the design specifications

at all. Simple and practical, it circumvents many known problems of a test to the

design specifications.

Summary of Important Points

Given a complaint from an injured party, products liability in tort must determine

what kind of software defect is at issue and assess monetary responsibility based on

31

that classification. For engineering design decisions that involve risk, a potential

defect in design is at issue. Whether a defect exists in this case is determined by a

social standard for acceptability of risk. For inadvertent errors in constructing the

product to the objective standard of the manufacturer’s own designs, a

manufacturing defect is found. There is no defense of due care to this sort of defect.

The distinctions between these two classes of defect are important to society as well

as to the designers (and injured parties). It is imperative that the law have a

deterministic algorithm to decide into which class a potential defect falls.

32

Chapter Four:

Constructing Software Code

The terms “defect,” “design,” and “design specifications” can be used in describing

the software engineering process but have already been used in the legal sense in

the previous chapter. This chapter will substitute the term “flaw” for “defect” and

will describe, in the generic sense, anything found lacking in the software process or

product. The term “design” has no simple substitute and will be used in the

software engineering sense except if otherwise noted. The term “specification” is

often used interchangeably with “design specification” and “requirements

specification” and that broad usage will suffice for the purposes of this chapter.

The Kinds of Software Considered Here

The analysis of this dissertation may not apply to all kinds of software. In

particular, the software considered here has the following attributes:

1. nontrivial in size and complexity;

2. reaches or affects a mass market of indirect “customers;”

3. is produced in a human readable (compiled) programming language; and,

4. has the potential to contribute directly to risk of personal injury as a part of a

physical system.

33

Examples of this kind of software include automated nuclear plant shutdown

systems, medical linear accelerator systems, and automobile antilock braking

systems. Medical expert systems, one of a kind simulators or unique experimental

systems would not be considered here.

Constructing the Software Product

Production of the software product involves, at the very least, coding. Coding

activity has been variously described in the literature. It is often referred to as

“construction” [GG75] [Som92] by those in the field. It has also been referred to as

“translation” of design into code [Dav95], where code activities are seen as a clerical

task [Gem81] that might not encompass any engineering judgment which might

affect product safety. However, if coding really is mere “construction” that does not

require engineering judgment, then it would certainly be fully automatable. Though

there has been some success in very small domains with simple problems, it does

not, in general, affect software development as a human activity. [Bro95]

Therefore, when coders produce code from a software design, some kind of expertise

is thought to be required. But then, what is the difference between producing

source code (coding) and code design? Let us first review the definitions of some

relevant terms from the Institute of Electrical and Electronics Engineers (IEEE).

“Source code” is defined in the IEEE Standard Glossary of Software Engineering

Terminology (1994 Edition) [IEE94] as:

34

source code. (1) Computer instructions and data definitions
expressed in a form suitable for input to an assembler, compiler, or
other translator.

The definition of “coding” is given as,

coding. (2) The transforming of logic and data from design
specifications (design descriptions) into a programming language.

Thus, construction of source code is seen as the “transforming” of design

information from design specifications into source code (a programming language),

which is suitable for input to some mechanical translator to translate into machine

readable form. "Design" is defined,

design. (1) The process of defining the architecture, components,
interfaces, and other characteristics of a system of component.
(2) The result of the process in (1).

Software engineering textbooks generally explain that “detailed design” is the form

of the design used to provide the coders their work assignments. [Sch99] "Detailed

design" is defined,

detailed design. (1) The process of refining and expanding the
preliminary design of a system or component to the extent that the
design is sufficiently complete to be implemented.
(2) The result of the process in (1).

These definitions do not give a very complete picture of what the coder is expected

to do or what a flaw in coding might look like. The definition of coding is

“translation of ... design specifications... into a programming language.” “Design” is

35

defined in terms such as “components.” The salient characteristic of detailed design

is, “sufficiently complete to be implemented.” The definitions of code and detailed

design reference each other and are circular. This is an example of the “chaos” that

reflects the state of the field. [Jac95] There is no clear definitional boundary found

to distinguish these two activities.

Clearly, though, software that has the potential of causing or contributing to

personal injury is not constructed in a haphazard manner. The discipline of

“software engineering” has arisen to provide “the application of science and

mathematics by which the capabilities of computer equipment are made useful to

man via computer programs, procedures and associated documentation.” [Boe81]

A careful software development process is required to produce safety critical

software products. Study of the process will give insight into the nature of code

construction and the flaws that can result there.

The Software Development Process

The purpose of the software development process is to provide a software solution to

some problem. Customer requirements are gathered, design plans for a solution in

software are developed, and software code is written. The code is then mechanically

compiled from its human readable form into a machine readable form. The machine

36

readable, or executable code can then be copied identically14 and marketed to the

public.

Notice that the software development process is a human effort geared towards

producing one code product for a given release.15 The copying process may produce

n copies for the market, but they are the same product. This fact is illustrated in

figure 5.

Figure 5 - Software Production

14 Notice that flaws in the copying process are possible, but the chances are so insignificant
that they will not be considered here. See generally [Par90] or [Ham92] for more details and
further explanation.
15 [Par90] references regression testing and explains that any changes to the code result in a
completely new software product.

 Design, Plan
 Specifications

 Handcraft single
 software code
 product with
 flaws

 P(1..n) identical copies
 of software code product
 with flaws

37

What is the nature of the flaws that can creep into this single software code

product? Recall that the law of products liability is generally concerned with

classification of flaws that exhibit the software engineer’s planning (design) and also

with failures to produce a product that implements that plan correctly

(manufacture). To further investigate the potential for code flaws of this sort, the

software development process is reviewed in more detail.

Code is the Product of a Human Effort

Code production has not been automated to any great extent. [Bro95] It is still the

result of an intense human effort involving, at the very least, interpretation of

specifications and code writing to satisfy them. [Par86] notes that, “human errors

can be avoided only if we avoid the use of humans.” Humans are capable of a range

of simple “mistakes.” Two that are relevant to this work are listed below:

• flaws in the coder’s interpretation of a specification; and,

• flaws of transcription or simple mistakes in coding accuracy.

If these are the only kinds of flaws that appear in code, then coding is a simple

clerical task to be performed purely as a function of the given specification. A

review of software engineering thinking about the process leading to coding is

instructive in this regard.

38

Process Models

Code and Fix

Early efforts to produce code were based on simpler tasks than are attempted today.

A carefully designed process of specification before producing code just wasn’t

necessary for the simple tasks attempted. The basis for code production was simple:

a single coder considered the problem and attempted to use a program to solve it.

The first attempt was expected to fail, so the code would be modified in the attempt

to revise the code solution to make it workable. In this way, a piece of working code

might eventually be produced, and “code and fix” is the process, shown in Figure 6.

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Figure 6 - Code and Fix

A specification is not necessarily produced when developing code this way. The

customer’s requirements reside in the head of the coder, where the design is

39

created. The design is then written and constructed as a code product in one fell

swoop. Not a bad idea for trivial coding tasks where size, reliability, safety or

maintainability are not serious issues.

As projects grew in complexity and size, other nonfunctional requirements such as

reliability, safety and maintainability became more important issues. These issues

could not be addressed effectively from the code and fix perspective. [Sch99]

Careful, systematic planning was used to help in development of nontrivial projects

where higher quality was desired.

Waterfall model

In the 1960’s and 70’s, software developers began to think of the software

development process for any nontrivial project as a sequential or “waterfall” model.

[Bro95] The process “stages” of planning, coding and testing are formally separated

in the attempt to break down a complex process into smaller, more manageable

subtasks. Testing to detect flaws is performed on the code, where flaws may be

corrected until the code product is of satisfactory quality. This process is

illustrated in figure 7.

40

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Software Planning Activities

Coding Activities

Figure 7 - Waterfall Model

Notice the following things about this model:

• the project goes through the process once, entirely “top-down” - all design

decisions are made in the discrete planning stages, before code is constructed;

• code is the “construction” activity following design, its purpose is to construct

code to satisfy design intention; and,

• all flaws reside in the code, where the testing is performed to detect them.

In 1970, Winton Royce [Roy70] observed that this model did not suffice to describe

reality, so he proposed the addition of feedback loops. This feedback is limited to an

immediately preceding stage in order to limit process complexity. The more

realistic model is shown in figure 8.

41

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Software Planning Activities

Coding Activities

Figure 8 - Waterfall with Feedback

While this was recognized as an improvement, it was not really surprising. It is

true for many mass produced mechanical devices. The actual construction is likely

to result in some lessons for design. [Pet92] For software developers, this new

model was an explicit recognition of the fallacy that software may be developed

systematically through consecutive, discrete stages of development. Feedback

from the coding to design is necessary for any real project. But this implies that

specifications are not the self contained activity originally envisioned.

Inevitable Intertwining

[Bro95] explains that, “[l]ike the energetic salmon [...] experience and ideas from

each downstream part of the construction process must leap upstream, sometimes

more than one stage, and affect the upstream activity.” [Bro95 at 266] [SB82] goes

42

further and explains that specifications can never be self contained, that

specifications and implementations are “inevitably intertwined.” They base this

conclusion on two factors: design realities discoverable only during construction of

code and imperfect foresight during the specification activity. In their view,

implementation is a process of “specification modification.”

[Par86] in basic agreement with these views, attacks the idea that a “rational

design process” could ever exist for software. He focuses on inherent inadequacy of

the software specifications as the basis of his argument. He finds that

specifications will never be adequate to the task of completely specifying the code

for the following reasons:

• incomplete information about original product requirements;

• many design details only become known as construction proceeds, designers

cannot foresee all consequences of their decisions before construction;

• for complex products, humans are unable to fully comprehend all the details to

design and build the correct system;

• project specifications are subject to change for external reasons;

• human errors are expected in a human activity like specification;

• preconceived design ideas involve less than ideal designs; and,

• economic pressures for reuse of less than ideal components.

These factors result in specifications that are less than perfect, and will be

incorrect, ambiguous, inconsistent, or incomplete in some measure. [Par86]

43

The specification insufficiency problem is really quite difficult, even for seemingly

small and simple sets of specifications. An example is given in [Mey85] of a simple

specification given by Naur in 1969 that was “proved correct.” Goodenough and

Gerhart [GG77] showed seven errors found in Naur’s specification. In 1985,

[Mey85] finds several other specification problems with the “corrected” version. One

might wait for the next paper to come along.

Spiral Model

The currently accepted model of the software development process is a

generalization of many of the previous models. [Boe88] This spiral model explicitly

recognizes an incremental backstepping through the process in a spiral that could

be infinite in length. Boehm admits that specifications produced are not necessarily

uniform or complete during the process and that incremental efforts to increase

their sufficiency are based on risk priorities and resources available. Figure 9

shows the spiral model.

44

Concept of
Operation

Requirements
Plan

Requirements
OAC

Risk
Assessment

Risk
Item

 Set

Risk
Management

Plan

Requirements

Risk
Control

Requirements
Validation

Abstract Specification
 Plan

 Abstract
Specifcation
OAC

Risk
Assessment

Risk
Control

Abstract
Specification

Abstract Specification
Validation

Concrete Specification
 Plan

 Concrete
Specification
OAC

Concrete
Specification

Concrete
Specification Validation
and Verification

Software
Development Plan

Risk
Assessment

Risk
Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

CommitReview
partition

Determine
objectives,
alternatives,
constraints
(OAC)

Figure 9 - Spiral Model

Coders Must Face Design Issues

Coders face the weight of the process bearing down on them in difficult situations.

They are at the “end” of the code product effort in time and resources. The pressure

is on them to produce a working product, to modify the product when needed, to

45

repair any flaws that have been found. Coders are expected to deliver the working

product for final distribution and sale. [Sch96] They suffer this pressure within the

framework of market pressures: limited resources and time deadlines. [Bro95]

If the specifications are inevitably insufficient to provide all the coders need to do an

adequate job, what is their option? They must perform design activities during code.

These two possible cases illustrate their dilemmas:

• “no specifications;” and,

• “insufficient specifications”

In the case of no specification, it is clear that coders must engage in all the activities

needed to produce a working code product. It is common, even for safety-critical

software products, to find that there is no separate specification document in

existence.16 The software code itself sufficed for conceptualization of design and

implementation entirely. An example of a safety-critical software system

apparently implemented without any software specification separate from code is

the Therac-25 linear accelerator built by Atomic Energy of Canada, Limited. [LT93]

Even when there are specifications, even when they are carefully produced and

analyzed, they are not expected to be perfect or self contained. [Jaf88] They

certainly cannot ever be proved to be so. [Lev95] They will not contain all the

information necessary to code up a solution to the problem at hand. Common forms

of insufficiency for specifications include incompleteness, incorrectness,

46

inconsistency and ambiguity. Each of these has direct consequences for the coders,

under pressure to build a working product.

Software specifications that are not “complete” cannot be counted on to express full

design intention. They are only a partial expression. Coders faced with

incompleteness may need to fill in the gaps for design, similarly to the no

specification case. Incorrect specifications cannot be counted on to express true

design intention. Coders faced with this problem may need to make the “correct”

decisions if they are discovered late in the process or are subtle in nature.

Inconsistent specifications can exhibit opposing design decisions depending on what

part of the specification is consulted. Coders, if faced with this problem, must

choose some interpretation and build around that. Ambiguous specifications can be

interpreted to yield different designs with equal authority. Coders may need to

resolve ambiguities in order to proceed building a working code product.

These problems are faced by coders everyday. Real world systems have been

developed using specifications known to be incomplete. For instance, the TCAS

system was developed entirely from a specification where much of the design

intention was missing. [LHH94]

16 This information comes from private communications with several coders working on
safety critical and other software systems.

47

Summary of Important Points

In this chapter, it has been shown that software is produced such that every flaw

produced in the code is expected to appear in every copy of the product released to

the market. It has also been shown that definitions of “code” and “design” are in a

state of confusion within the field of software engineering. Specifications are found

to be insufficient to enable the coders to perform their jobs in a clerical manner.

Code construction is found to be an imperfect process: the idea that software

“design” occurs entirely separately from, and previous to, software “construction” is

an unrealistic idealization.

48

Chapter Five:

Defects in Software Source Code

The possibility of legally cognizable product defects is now investigated for the

software code product. First, the law must be shown applicable to software. Next,

simple attempts to externalize the costs of such liability are dismissed. Finally,

code flaws are demonstrated that map into both classes of defect: manufacture and

design. Extant tests to distinguish the defects are applied and shown insufficient to

decide.

Is Software Subject to the Law of Products Liability?

Recall from chapter 3 that a products liability case needs to involve the following:

• personal injury or property damage (not pure economic injury); and,

• the instrumentality causing the harm must be considered a “product” for

purposes of products liability.

Personal Injury

The first prerequisite is satisfied by definition: software as considered here (see

chapter 3) can cause or contribute to personal injuries and is not restricted to

economic damages. This sort of software is increasingly prevalent in products

49

produced today, injuries have already occurred and no technical cure is expected.

[LT93]

Software Code as a “Product” or “Component”

The second prerequisite is a question of law to be decided by the Courts. The factors

to be considered include: whether software code has a value of its own as a salable

item, can be “owned,” is subject to correction and modification, and whether it is

mass produced and marketed. [Mor89] The sort of software considered here has

value of its own that is embodied in some medium for sale and ownership. It can be

mass produced and reaches a mass market of remote customers. Many legal

commentators argue on the basis above and other bases that safety critical software

should be considered a product for purposes of products liability in tort. [Gem81]

One court has argued in dictum that, “software that fails to yield the result for

which it was designed may be” an example of a product subject to products

liability.17 [Win91] This sort of dictum, though not binding, is often seen as a signal

from Courts as to the eventual outcome on the issue. [NLJ91 at 3]

One legal commentator has further argued that software may be considered subject

to products liability as a “component” of the computer regardless of its individual

status as a product. [Gem81]

17 This court also addressed the issue about whether the artifact has any dangerous
propensities by itself. Software, of course, does not, it cannot hurt anyone by itself. The
court argued about aeronautical charts that, “[A]lthough a sheet of paper might not be
dangerous, per se, it would be difficult indeed to conceive of a salable commodity with more
inherent lethal potential than an aid to aircraft navigation that, contrary to its own design
standards, fails to list the highest land mass immediately surrounding a landing site.” The
court cites [Flu85].

50

Overall, there are very few legal arguments against the application of products

liability in tort. Most authorities consider the issue settled [Wol93], though legal

precedent has yet to be set.

Can the Costs of Products Liability be Easily Avoided?

Many software developers carefully craft special disclaimers in an attempt to

protect themselves from products liability. But as noted in chapter 3, the law states

that liability for product defects cannot be defeated by contract or license

disclaimers. [Res98] Developers may choose to protect themselves from liability

costs by insurance. Such insurance may become available with increasing demand.

Insurance rates are, of course, subject to an assessment of the liability risks of the

insured. Thus, rates will eventually reflect the estimated costs, spread over the

industry. Liability is therefore still an important consideration for software

designers. There is no easy way to avoid the costs.

Software has been shown to be subject to the law of products liability. There is no

simple way to avoid the costs of liability. The nature of liability and expected costs

of liability must be investigated.

51

Research Question

So far, this dissertation has explained the basics of products liability law and the

nature of software code construction. With this background, the research question

may now be asked:

Given a flaw in software code to which a personal injury may
be causally traced, can that flaw be reliably classified as a
defect in manufacture or design?

For purposes of discussing this question, make the following assumptions:

• mass marketed software is involved;

• personal injury is involved;

• the injury is causally traced to small fragment of code for investigation;18

• the plaintiff (injured party) files a products liability lawsuit alleging a defect in

code manufacture; (most cost effective for this party if provable)

• the defendants (designers) claim the issue is one of design and that the lack of

cost effective safer alternatives exonerates them from liability; (due care

exercised)

This hypothetical will provide the basis for the analysis of this chapter. The basic

argument of the chapter is that both classes of defect are possible in software source

code. A court must necessarily be able to distinguish one class of defect from the

18 There is a whole range of causation problems that might be discussed at this point.
However, such a discussion is beyond the scope of this dissertation. The interested reader is
referred to [Bei96] for a discussion of causation and software bugs.

52

other. However, the available tests are shown to be insufficient to the task in a

whole class of realistic cases.

Classes of Defects that Originate in Code

Some in the legal and software fields claim that software (code) is pure design, but

they make the claims without any legal analysis of the implications. If they are

correct, and the only defects possible in software code are considered defects in

design, then legal responsibility for defects is defined by a single standard:

negligence.19 Though some work would remain to be done to define the “due care” of

a software engineer in producing code, the standard of responsibility is well

understood and could be applied. [Kan95] [TRK96]

Design

There is no argument in the literature about whether design defects can appear in

code. It is clear that design decisions made at a higher level of specification could

involve poor analysis of social risks and utility. Such decisions could well result in a

judgment of design defect. The code product that meets such specifications contains

a defect inherited (correctly!) from the higher level.

19 Legal concern for inadvertent code defects would necessarily turn to what has been called
“inadvertent design defects.” [Hen76] But a determination of an objective standard is
required by which to judge such defects. Essentially, this results in the exact same problem
analyzed here.

53

Recall from chapter 4 that some design decisionmaking goes on right in the code

and is not always covered by a separate specification. This sort of design decision

is “native” to the code. It proves to be more troublesome than the inherited design

decisions.

A short list of possible “native design decisions” (not intended to be anywhere near

exhaustive) include:

• choice to manipulate global or local data, problems related to scoping;

• choice of particular data structures to represent data;

• choice of algorithm construct such as “do-while” or “repeat-until;”

• choice of ways to implement exception handling; and,

• choice of communication mechanisms.

Each of these decisions can have safety implications under the right circumstances.

For instance, the choice of global variables to represent shared data between

concurrent processes may be made on the basis of memory efficiency and speed

considerations. However, the problems of deadlock, livelock and starvation may

occur if a nontrivial mathematical solution is not correctly designed and

implemented in the code. [Jac95] This very problem was found in the Therac-25

code and proved responsible for several horrible accidents. [LT93]

54

Manufacture

If software source code is shown to exhibit defects that can be legally characterized

as defects in manufacture as well as defects in design, then the ability to distinguish

them in a reliable manner is at issue. The legal standards are different and this

difference will be quite significant to software engineers in their risk management

efforts.

In chapter 3, fundamental characteristics of defects in manufacture are contrasted

with fundamental characteristics of defects in design. Recall, as shown in figure 3,

fundamental characteristics of the defect in manufacture include:

1. the defect itself is discovered by comparison to the internal design standard of

the manufacturer;

2. the essence of the defect is inadvertence, not inadequate engineering intention;

3. the danger due to the defect is not avoidable by improved engineering analysis;

and,

4. the defect is not known beforehand, it is latent (not detected in test).

There is no argument in the literature about the nature of a physical defect in a

diskette or other physical media: it is a product manufacturing defect in the

traditional sense. There is some argument in the literature, as seen in chapter two,

about whether defects in manufacture will apply to code at all. This question must

be settled.

55

An Example

Consider the following simple example:

Specification: Increment ThisVariable

Code: X := X * 1; */ Notice the mistake, should be “X := X + 1;” /*

This flaw is an unintentional failure, coders make such mistakes because they are

human. The flaw is certainly latent, else the product would have been rejected by

the manufacturer’s quality control or testing group until it was corrected. This flaw

shares all the basic characteristics of a manufacturing defect. Does it fit the formal

legal definition?

 Recall the salient part of the Restatement definition:

... when the product departs from its intended design even
though all possible care was exercised in the preparation and
marketing of the product; ... (emphasis is mine).

The essence of this definition is a departure from intended design. The failure of

the coder to correctly satisfy the software design specification exhibits a “departure

from intended design” by definition. The essence of the defect is the difference

between the designer’s intention and the coder’s construction of the code product to

satisfy that design intention. This defect is clearly an undiscovered mistake in

56

implementation of the design intention. Thus, the software product contains a

defect in manufacture.

Such flaws are not uncommon in software code. Some may be eliminated by the

testing and analysis process. For instance, simple syntax flaws are often caught by

compilers. Some flaws may be caught during specification based testing. [RAO92]

However, testing can only reveal the presence of flaws, not their absence. Some

testing is designed specifically to reveal particular classes of faults. [RT88]

However, testing cannot reveal all such flaws in the code product. Inevitably, many

flaws remain in code that is released. [Par90] Some typical examples of ways to

produce code that inadvertently fails to satisfy design intention are:

• inadvertent operator, numerical, variable substitutions in expressions;

• inadvertent permutations of elements of a noncommutative expression;

• inadvertent factoring of nonassociative terms in an expression;

• inadvertent “cut and paste” editing, variable scoping problems; and,

• inadvertent errors in complex logic expressions in conditionals.

This list is by no means exhaustive, but meant to illustrate the broad possibilities

for manufacturing defects in code due to coder inadvertence. All of these kinds of

defects have the potential to cause unexpected paths through the program’s state

57

space with unexpected consequences for safety.20 Notice that analysis of

requirements and designs have no ability to detect or eliminate such defects. These

defects are the byproduct of a human construction effort.

Overall, though code can contain design flaws, it is not “pure design” in the legal

sense. It has the potential to contain defects in manufacture. The ability to

distinguish the classes of defect is now critical to the proper operation of the law of

products liability.

The Classification of Software Code Defects

The foregoing has shown that flaws in software source code have the potential to be

defects in design or defects in manufacture. The difference in social and liability

costs for these defects is significant, and thus they must be distinguished. As

explained in chapter three, the common law of products liability has two ways to

distinguish these product defects from one another:

1. the deviation from the norm test; and,

2. a test of comparison to the manufacturer’s “design specifications.”

20 Work has been done to find conditions where code faults will cause erroneous output and
alert testers that a problem exists. [RT88] Other work is in progress to develop a notion of
software’s sensitivity or tolerance to such defects. [Voa97] This work aims to quantify risks
of software hazards due to specific kinds of defects.

58

1. Does the “Deviation from the Norm” Test Suffice to Distinguish Code
Defects?

The deviation from the norm test derives design intention from the production

norm. However, the software code product is built only once in release version and

exact copies produced. There is thus no “deviation” from the “norm” - the one

product produced for release. In general, each and every defect of either class will

appear in each and every copy of the software product to reach the market.

Comparison of the purportedly defective product against others like it will reveal no

deviations at all. This test fails to distinguish the classes of defect.

Notice that the foregoing conclusion does not apply to defects in software

configurations, where the possibility exists that a comparison to other similar

products can reveal a difference and expose a defect. This is not the general case

and will not be further developed here. 21

2. Does a Test Against “Design Specifications” Suffice to Distinguish Code
Defects?

Since the deviation from the norm test fails, a test of comparison to design

specifications is the only alternative.

Application of this test involves a comparison of the product as constructed against

the design specifications as an embodiment of the engineer’s design intention. The

21 One might also imagine that n-version programming might fall within these tests for
defects, but since the code may be written differently from version to version, manufacturing
defects are likely not discoverable by this test.

59

last chapter used a broad definition of “specification” that is applicable here. Under

the law of products liability, design involves any decisions that foreseeably affect

product safety. Thus, “design specifications” may include decisions made in

requirements on behalf of the consumer, software design, and may even encompass

comments in code.

60

If the potential defect is shown to fail to satisfy the design specifications, then the

defect is classed as one of manufacture, a mistake in construction of the product. If

the potential defect in source code is shown to have properly satisfied design

specifications, then the potential defect is classed as design and a risk-benefit

analysis must ensue to determine whether it really rises to the level of a product

defect.

 This test is broken into two separate cases for consideration:

a. no specification exists; and,

b. some specification exists.

a. No Specification Exists

This case is actually quite common, even in the field of safety-critical software.22

The Therac-25 linear accelerator code is an example. Consider the following

fragment of code in figure 10.

22 Private communications with coders who work on such products.

61

var := 0;

While (activity) Do

var := var + 1

Endwhile

Figure 10 - Therac Code Fragment

The code maintained an 8 bit global variable as an apparent indicator to other code

that a certain activity was taking place. The variable had been initialized to zero

before the activity began. During the activity, the variable was incremented and it

held a positive value while the activity took place, except during once cycle when the

value rolled over to zero (after 256 cycles). At least one injury has been traced to

the reading of a zero from this variable while the activity was still taking place.

[LT93]

This certainly could be a defect in design. The coder’s judgment about the

maximum number of update cycles during the activity might be at issue. The cycle

count itself may have been a design issue from testing or other analysis.

On the other hand, it could have been a mistake in implementation. The coder may

have meant to write “var := 1” instead of “var := var + 1”. The initialization of the

var to zero may also be in the wrong scope because of a simple cut and paste error.

These would yield a defect in manufacture.

62

When there is no specification separate from the code, there is no objective evidence

of intended design for comparison. A Court has no way to decide the question.

b. Some Specification Exists

As discussed in chapter 4, software design specifications have been shown to be

inherently incomplete, inconsistent, ambiguous, and incorrect to some degree. They

do not fully and reliably embody the intention of the software engineers who

designed the source code. Similarly to the “no specification” case, if there is no

objective evidence of the designer’s intention, the Court cannot decide what kind of

defect faces it. Thus, the test of comparison to design specifications is not sufficient

to classify software source code defects.

This difficulty has been experienced in the current airborne collision avoidance

system (TCAS). [LHH94] wrote about the specification that “the intent was

missing. Therefore, distinguishing between requirements and artifacts of the

implementation was not possible in all cases.” [LHH94 at 705] This was in the

context of an effort to “reverse engineer” formal specifications from legacy

pseudocode specifications. Insufficiency remains as the specifications are

continually maintained.23

23 The benefits and limitations of such an approach are evaluated in the next chapter as “post
hoc rationalization.”

63

In conclusion, though these tests may work in some cases,24 they do not work in

some real world cases. Given an arbitrary code fragment to examine, as will occur

in a court case, the extant tests cannot be counted on to distinguish the class of the

potential defect.

Summary of Important Points

In this chapter, it has been shown that software code can harbor flaws of

engineering judgment (design) or plain failures to implement the design correctly in

the code itself (manufacturing). However, both given tests for distinguishing these

classes of flaws fail in known situations.

24 There is reason to believe that even when the test “works,” it may not be revealing
information useful to application of the primary social goals behind the law. This is
discussed further in chapter 6.

64

Chapter Six:

Specification Insufficiency: Essence or
Accident?

To this point, it has been shown that software will be subject to products liability in

tort for accidents involving personal injury. Defects of both different classes may be

present in the code. Distinctions between these defect classes is crucial to the

rational operation of the law. Two methods have been developed to distinguish

these defects for products, and these methods have sufficed for all products to come

before the law so far. These methods do not suffice to distinguish defects in the

software product.

This chapter will look at the impediments to classifying defects in the software

product to see if any promising approaches exist. The deviation from the norm test

is shown nonadaptable due to the basic nature of software production. The

possibility that progress will improve the sufficiency of specifications (to distinguish

design from implementation) remains. This possibility for improvement does not

hold a solution for two essential reasons:

• progress towards a solution to the software specification problem is limited; and,

• solution to the technical problem of software specification does not solve the

legal problem of classification of defects.

65

First, the non-adaptability of the deviation from the norm test is explained in detail.

Next, the possibilities for technical progress in software specifications are reviewed.

Finally, fundamental difficulties with any technical solution are demonstrated.

This difficulty is shown to be an essential difficulty in the Brooks sense, it will not

yield to simple solutions.

Can the “Deviation from the Norm” Test be Adapted to

Software?

For traditionally manufactured products such as lawnmowers and automobiles, the

individual products are essentially constructed to meet design specifications one at

a time, individually. Random flaws appear and are distributed among the

individuals of the production run. Thus, manufacturing defects themselves are not

generic in nature. Design defects, on the other hand, appear in the entire product

line uniformly, so they are often referred to as “generic.” [Res98]

For software, a single code product is constructed to meet the design specification

and then identical copies created. This has drastically different consequences for

the distribution of manufacturing defects over the number of products sold on the

market. Manufacturing defects may be randomly distributed, but over the

structure of a single product! These defects then appear identically in each and

every copy of the product. Thus, all defects of software code construction may be

66

termed “generic.” This defines a new class of product defect: the generic

manufacturing defect.25

Clearly, there is no way to modify the deviation from the norm test to work for the

software product. As seen in chapter 4, identical copies are created for the market.

The norm for the software product line is the single release version. There are no

deviations to distinguish defect classes.

Since the deviation from the norm test cannot be adapted to the software product,

the sufficiency of software specifications must be reviewed as the only potential

solution to the problem.

Can Software Specifications be Made Sufficient to Distinguish

Defect Classes?

Two arguments will be advanced that software specification can never be entirely

adequate, in general, to classify arbitrary defects in software code. The first

argument is based on limited resources and the ultimate difficulty of the task.

Since the law needs a deterministic algorithm (that halts) to decide the defect class

of an arbitrary flaw, partial solutions won’t work.

The second argument is more fundamental, and is based on the essential nature of

software code as a product. The medium of design and medium of implementation

25 So named in a conversation with Cem Kaner about these issues.

67

for code have no objectively observable boundary. Attempts to draw lines are shown

to be subjective. Distinctions drawn from such boundaries are therefore not

sufficient for legal decisionmaking.

Specification Insufficiency and Progress in Software Engineering

Software engineers recognize that specification completeness, consistency,

correctness and ambiguity are serious problems. [Jaf88] Progress is important and

active research is conducted into improving the situation. Several areas are

reviewed briefly for their potential to solve the specification problem: post-hoc

rationalization, software design standards, and formal specifications. This is a

short list, but represents a range of views and exposes some basic limitations on

technical progress in software specifications.

a. Post-hoc rationalization

[SB82] suggest that a distinction between specifications and their implementations

“can only be made after the fact.” [SB82 at 439] Ideally, all design decisions made

(or changed) in code could be recorded in the design specification after the code is

fully constructed. In the end, this would result in a more complete, consistent,

unambiguous and correct set of design documents. [Par86] expands on this idea

and derives a post-hoc rationalization of the entire process where the design

specification would be updated to a rational state even though the process could not

have worked that way in reality.

68

Substantial factors militate against creation of an ideal document capturing full

design intention [and fully distinguishing design from the code]:

1. Limited resources

• expensive to devote the time and effort to full post-hoc rationalization;

• only possible after the product is ready for release but market pressures

dictate release without delay.

2. Inherent difficulty

• subtle design knowledge is difficult to communicate to others;

• notions of what belongs in the design specification are not clear;

The first reason is based on limited resources. The task of producing ideal

documents would require a serious commitment of resources to a nearly perpetual

task. Market pressures on developers dependent on profits for survival make long

delays in release nearly impossible.

The second reason is the pure difficulty of the effort to produce ideal documentation,

even after the product is produced. The problem of communicating the design

intention to others on a team, even when there is a systematic effort, is a difficult

one. [LHH94] Not only that, but those working on the problem have no clear

definition of what belongs in the “design” document distinguished from what

belongs in “code.” For these reasons, it is unlikely that post hoc rationalization can

ever meet the goal of sufficient specifications.

69

b. Design Standards

Jackson notes that software engineering does not have the advantage of a narrow

focus, that software engineers are really analogous to “physical engineers,”

“imaginary polymaths who understand how to specify, design, and build any useful

physical object whatsoever, in any material, to serve any purpose.” [Jac95 at 189]

The only real successes in software engineering have come in the specialized

branches, such as compilers, databases, and operating systems. There are no

standardized designs for software in general. [Lev95] Software may not even be

amenable to such standardization. For engineers in the established branches of

engineering, they don’t focus on the problem to be solved as much as they focus on

problems of a relatively small and well-defined class. “The design solutions are

already well classified, and with them the problems that they solve.” [Jac95 at 189]

But software is not often like that, each software system to be designed is not likely

a different solution to a standard problem, but a solution to a different problem.

Though software specification may not be amenable to general design standards,

progress may be possible by narrowing the design space within which software

engineers devise solutions to closely related families of problems. This is one of the

implied goals of research in software architecture. A software architecture is a

particular form of software design, [GS93] and it serves primarily as the “big

picture” of the system under development. [RM98] Architecture Description

Languages (ADLs) and architectural styles provide a framework for modeling a

software system’s conceptual architecture and thus may clarify design intention at a

high level. [MR97] In this sense, they may be a vehicle to progress, though they do

70

not promise to completely overcome the sufficiency problem for design

specifications.

Another direction in architecture research attempts to relate architectures (in the

solution space), to the application (problem) domain through domain specific

software architectures (DSSA). [Tra95] However, application domains have not

yet been classified and thus the relationships between architectures and application

domains have not been established and cannot be evaluated.

c. Formal Specifications

Formal specifications directly relate to the problem at hand. Meyer claims that

they “help expose ambiguities and contradictions because they force the specifier to

describe features of the problem precisely and rigorously.” [Mey85 at 22] Wing

extols the ability to “detect discrepancies between a specification and an

implementation.” [Win90 at 20] But, though progress is being made [LHH94], it is

recognized that formal specifications cannot yet adequately model nonfunctional

properties such as safety. [Hal90] [Win90] Even assuming that progress is made,

there are reasons that formal specifications will not be sufficient to identify

arbitrary manufacturing defects in code.

As Jaffe observes, the power in a specification is in the abstraction: the ability to

omit details in order to deal with complexity. [Jaf88] Thus, formal specifications

only cover some of the program’s behavior, they leave out details that are not

considered important. The implementers must fill in the details where they’ve been

71

left out. [Hal90] Jaffe admonishes specifiers to leave little to the implementer’s

judgment when specifying safety-critical systems because implementers do not have

the required systems background. [Jaf88] He is troubled by the reliance on human

judgment in specification of the proper level of detail for the implementers.

Since the sufficiency of formal specifications relies on human judgment, it is subject

to the same problems discussed in chapter four such as imperfect foresight and

design realities only discoverable during implementation. [SB82] Thus, while the

precision of formal specification may be an improvement in our ability to detect

arbitrary manufacturing defects in the implementation, it is not a complete solution

to the problem.

Though progress is being made, most software engineers understand this to be an

unsolvable problem. [Lev95] It is not a new problem, the specifications for

traditional physical artifacts experience many of the same difficulties. [Pet92]

A Difficulty Inherent to Software: Description as Product

The reality of software as a product is that it is actually the description of a

machine, not the embodiment of the machine itself. This fact is troublesome when

software engineers or lawyers need to distinguish software design intention from

software construction in source code. It presents a difficulty not present in physical

products such as automobiles or lawnmowers. For such physical systems, there is a

natural boundary between design intention and construction imposed by the

different properties of the media of expression for each stage, shown in figure 11:

72

Medium of Design

Medium of Implementation

Figure 11 - Physical Systems

The ability of the auto assembler to perform any design or express individual

intention in the product (make significant choices during implementation of the

product) is severely limited, not only by the manufacturing process (strives for

simplicity and uniformity in pursuit of efficiency) but by the very nature of the

implementation medium: the physical “stuff” used in construction. The assemblers

on the Chevy Cavalier line cannot possibly, one day, decide to increase trunk space

for the car being constructed. They cannot add a new steering system, implement

the brakes in a novel manner, cannot build a boat instead of a car. These choices

would require major retooling, new plans, new processes; parts would need to be

designed and built, then physically constructed. It is not easy to reshape the trunk

lid to your liking! Once the metal is stamped or shaped, it is not easy to change.

Changes in physical implementation usually take a major effort, for they are

constrained by size, shape, weight and other factors that restrict design choices.

Now, notice how software construction is organized. The software specifications are

descriptions of solutions to the problem under consideration. They may be written

in structured english or some more formal medium. The implementations are also

descriptions of solutions, but to the problems described by specifications. They are

 Descriptive

 Physical

73

written in a programming language: a human readable language that is capable of

mechanical translation into machine readable form. As Jackson says, “our

technology is the technology of description.” [Jac96 at 17] The relationship between

specifications and implementations for the software product is shown below in

figure 12:

Medium of Design

Medium of Implementation

Figure 12 - Software

This observation has two important consequences for the construction of the

software product:

• it enables the coder to do major design work; and,

• it requires the coder to be skilled in manipulation of a broad spectrum design

medium.

Enabled for Major Design

For those constructing software, there are few constraints on implementation that

are not present for software design. This non-physical medium of logical description

 Descriptive

Descriptive

74

is not constrained by size, weight or resistance to major change. The coder is,

within the scope of his programming assignment, as free as the designer to create

the product implementation of his choice, virtually unrestricted by immutable

physical realities as is the auto assembler. The coder is able to exert control over

his implementation of the software product that the auto assembler cannot even

dream of! Prime examples of the coder’s ability to perform major design can be seen

in the so-called “easter eggs” in mass produced software products. For instance,

Microsoft Excel 97 contains an entire flight simulator accessible by several obscure

keystrokes.26

Coding Skills Required

As has been seen, coding is not an entirely clerical skill. General unskilled labor is

not considered sufficient to the task, as might be the case for the automobile

assembly line. The coder must be skilled in working with the broad design medium

of programming languages at the very least. Most coders that have a 4 year degree

in computer science would be equally trained in code design issues.

Overall, the coders have the apparent ability to do major design, they are skilled in

manipulation of the design medium, and, as shown previously in chapter four, are

often forced to deal with design issues on a regular basis during code construction.

It is no wonder that an objective separation of the specification from the

implementation is recognized to be difficult!

26Risks Forum, 5 January, 1998. See www.CSL.sri.com/risksinfo.html for archive info. Also
see http://www.eeggs.com/ for an extensive archive of examples.

75

Partial solutions are suggested by the research. The closer software engineers can

get to a halting algorithmic solution to the problem of distinguishing specifications

from implementations, the better for society when the accident cases come to court.

However, there are even more fundamental problems with the technical approach to

this problem.

More Fundamental Difficulties With Specifications

Notice that software specifications vary in level of detail on a continuum broadly

outlined in figure 13. For purposes of interpretation, hold the code fixed. Now

consider the variation in level of detail possible in specifications for that code.

76

pgms satisfying

 N

 1 level of spec

 OVERGENERAL OVERSPECIFICATION

(spec = code)

 Design Manufacture

Figure 13 - Specification Detail

Though the magnitude on the graph may not be well defined, the general idea is

clear: more trivial specifications allow a greater number of distinct programs to

satisfy them, while more complete (more detailed) specifications will allow fewer

distinct programs to satisfy them. The limiting case of the complete specification is

that of specification = code, where there is only one program that satisfies the

specification. Also note the additional dimension along the bottom of the graph,

where the effect of these specifications on the identification of defects is noted.

If the design specification is made more trivial so that many distinct programs can

satisfy it, then there is an argument based on the law that any defects would be

77

defects of design, including inadvertent mistakes in executing true design intention

(implicit). Of course, one might also argue that such specifications are insufficient

to capture much of the design intention, a design argument to begin with. The

actual coding mistakes are swallowed by designs that tend toward triviality.

 If the design specification is closer to the code and specifies more, then more

deviations from true intention will fail to satisfy the specification. They fit the

definition of defects in manufacture.

However, a given piece of code does not have a fixed relationship to its specifications,

they can be written (or rewritten) with more or less detail. The legal implications of

testing to specifications are therefore dictated by the level of detail employed in the

specification. This is a subjective choice!

Uniformity of application of the law is not supported by such a regime, for different

organizations may use different techniques and languages for specification, with

differing implications for their ability to “find” defects in manufacture. This sets up

various incentives to write specifications towards one end or the other on the

continuum. In some situations, software specifications may be intentionally

manipulated to produce desired legal results favorable to one party or the other.

Therefore, the law cannot accept them as the only input to the process.

78

Society needs to find a way to operationalize its goals for the safety of products in a

rational manner. However, the optimum level of detail is not known, nor whether

there is an optimum level.

Summary of Important Points

In this chapter, software has been shown to be unique among products, and that

uniqueness has implications for the legal responsibility of software designers.

Progress in the field of software engineering is unlikely to perfect our ability to

distinguish the two classes of defect because it is the essential nature of the artifact

that stands in the way. Further, it is shown that technical progress, even if

completely successful, does not address the requirements of the law.

79

Chapter Seven:

Conclusions and Future Work

Summary and Conclusions

This work has addressed the problem of identification of arbitrary violations of

design intention (defects in manufacture) for the software product. Earlier chapters

have shown:

• accountability for software defects will be established under the law of products

liability in tort; and,

• the law of products liability in tort operationalizes a form of social risk

management by its classification of product defects into those of:

1. design intention (design); and,

2. unintentional defects in implementation of design intention

(manufacture).

The basis for this work is a hypothesis that a simple “stage of production” analogy

could be used to classify software defects in a rational manner. Under this analogy,

software specifications would evidence the design intention for the code. An

80

arbitrary code flaw could then be compared to the specifications. If specifications

were violated, a manufacturing defect has been identified. If specifications were

satisfied, a potential defect in design has been identified.

Investigation of the software development process reveals the following:

• there exists the potential for both classes of defect in software code; and,

• software specifications are insufficient to distinguish classes of defects in

arbitrary cases.

Specifications, in general, are not sufficient for products of other technologies either.

The law has developed a test to reveal design intention that is independent of

specifications: the “deviation from the norm” test. However, due to the nature of

software production, this test fails in the normal case. This failure points to the

novel nature of manufacturing defects in code: they are generic to the product.

The independent test fails completely to identify any generic manufacturing defects

in software. A test of comparison to software specifications can be used to identify

many of these defects, depending on its degree of sufficiency. The sufficiency of

software specifications is a subject of active research in software engineering.

Several areas of active research contribute to specification sufficiency, but none

provide it in full.

81

Therefore, the hypothesis is disproved, the stage of production analogy fails to

enable a rational classification of arbitrary software defects. It fails because

software engineers cannot deliver full sufficiency of specifications for arbitrary

fragments of code. This is true for all artifacts of design, though. The reason that it

presents such a problem for the software product is that the “deviation from the

norm” test fails to identify the generic defects in software manufacture.

However, it appears that progress in software specifications could take us as close

as we like to full sufficiency, limited by time and resources. Perhaps they could be

made sufficient “enough” to distinguish defects in most all practical cases.

Investigation of this possibility reveals deeper problems with the notion of software

specifications as an objective repository of design intention. For traditional

products like automobiles, the medium of implementation is defined by physical

laws that constrain the implementers in their ability to deviate from the designs

specified to something within well understood limits. Software implementers are

not so constrained. In fact, the medium of software implementation is so similar to

the medium of software design that implementers are quite as able as the designers

to produce major deviations from the basic design intention (or to create their own).

Since this is so, the distinctions between the code implementation and its

specification are those set by the software engineers. With current understandings

of software as a product, the distinctions are not objectively imposed by nature.

82

The law cannot rely on subjective technical distinctions to reach the rational,

repeatable results required under the common law.

Contributions of the Work

This work makes contributions to the areas of software engineering as well as

products liability in tort. Contributions in the area of software engineering include:

1. Products liability issues are virtually certain to arise for software products.

They may have enormous impacts for those involved in a case and eventually for

the entire industry. This work presents the first detailed application of the legal

defect classifications to the software product.

2. Risk management has emerged as an important component of the software

development process. Current work in this area has not addressed expected

costs of liability for product defects. The basic elements needed to address this

issue are presented in this work.

3. Software engineers generally accept the proposition that specifications do not

contain full design intention for the implementation. The limitations are often

seen to be human fallibility and poor resource allocation, against which progress

may be made by new tools and methods. This work presents a model of software

that exhibits theoretical, as opposed to practical, limitations on progress in

specification sufficiency. Progress in the use of specifications to guide

83

implementation must be tempered by the knowledge that distinctions between

specifications and code are subjective in nature.

In addition to the above contributions, contributions to legal scholarship include:

1. The law of products liability is virtually certain to face the classification of

software defects problem in the near future. Analyses in the legal literature

have not dealt with the technical aspects of this issue to any depth. This

dissertation presents a legal analysis based on a broad, detailed technical

perspective. Such an analysis is of great value for the common law because the

Courts are limited in the general breadth of possible analyses for each individual

case. For example, Courts are reactive to problems, they only handle cases that

are sued, they cannot proactively attack an issue as this dissertation does.

Courts can only decide the specific issues presented for decision or review. This

work takes a broad view of the larger issues surrounding software defects.

Courts respond to the subjective arguments of the parties in a case. This work

can take an objective view of the basic issues.

2. This dissertation articulates a new class of product defect, the generic

manufacturing defect, for the software product. It is this class of defects shown

to defy both legal and technical means at classification. It is thus to this class

that legal attention must turn in order to apply social goals of risk management

in some rational manner.

84

Future Work

Many lines of research are suggested by the current work:

1. The software process does not currently take legal requirements into account

explicitly. This work suggests that requirements due to products liability in tort

can be viewed as the requirements of “remote customers” of safety-critical

consumer software. This view allows a direct and natural integration of these

important considerations in the software process.

2. A related way to show software engineers that legal requirements are to be

considered explicitly during the development process is to analogize the safety-

critical software process to a process of experimentation. As experimenters,

software engineers are obligated to obtain the consent of the subjects: the

general public. The notion of legal consent is naturally contained in the

requirements of the law of products liability in tort and can be directly related to

case outcomes this way.

3. This work could naturally be extended to catalog software defect detection

methods by the class of potential defects that they uncover. This could be

beneficial for software risk management: expected costs of the defects could be

estimated and the cost of the defect detection by a given method compared. The

methods could then be applied in a more cost effective manner during the

software process.

4. Former work engaged the idea of “process fault trees” [TRK] that dealt

exclusively with the idea of design defects and negligence during the software

85

process. This work could be extended to deal with both kinds of defects and add

relative expected costs in order to produce priorities along the branches that

correspond to the most cost effective paths.

86

Bibliography

[Ban94] Banks v. ICI Americas, Inc, 450 S.E.2d 671 (Ga. 1994)

[Bei96] Beizer, Software IS Different, Address at Quality Week ’96

Conference (1996)

[BD81] Brannigan, Dayhoff, Liability for Personal Injures Caused by

Defective Medical Equipment, 7 American Journal of Law and

Medicine 123 (1981)

[Bir80] Birnbaum, Unmasking the Test for Design Defect: From

Negligence [to Warranty] to Strict Liability to Negligence, 33

Vanderbilt Law Review, 593 (1980)

[Boe88] Boehm, A Spiral Model of Software Development and

Enhancement, IEEE Computer, May, 1988

[Boe90] Boehm, Software Engineering Economics, Prentice-Hall, 1981

[Bro95] Brooks, The Mythical Man-Month, Anniversary Edition,

Addison-Wesley, 1995

87

[Con87] Conley, Tort Theories of Recovery Against Vendors of Defective

Software, 13 Rutgers Computer and Technology Law Journal 1

(1987)

[Cro85] Cronin, Consumer Remedies for Defective Computer Software,

28 Journal of Urban and Contemporary Law, 273 (1985)

[Dav95] Davis, 201 Principles of Software Development, McGraw-Hill,

1995

[Eis88] Eisenberg, The Nature of the Common Law, Harvard Books,

1988

[Flu85] Fluor Corporation v. Jeppsen and Co., 170 Cal. App. 3d, 468

(Cal. App. 1985)

[Gem81] Gemignani, Products Liability and Software, 8 Rutgers

Computer and Technology Law Journal, 173, (1981)

[GG75] Goodenough, Gerhart, Toward a Theory of Test Data Selection,

IEEE Transactions on Software Engineering, June 1975

[GL81] Gemignani, Law and the Computer, CBI Publishing Company,

88

Inc. MA, 1981

[GS93] Garlan, Shaw, An Introduction to Software Architecture:

Advances in Software Engineering and Knowledge

Engineering, volume I. World Scientific Publishing, 1993

[Ham92] Hamlet, Are We Testing for True Reliability? IEEE Software,

July 1992

[Hen76] Henderson, Design Defect Litigation Revisited, 61 Cornell Law

Review, 541 (1976)

[Hen60] Henningsen v. Bloomfield Motors, Inc., 161 A. 2d 69 (NJ 1960)

[HT91] Henderson, Twerski, Closing the American Products Liability

Frontier: The Rejection of Liability Without Defect, 66 NY Law

Review, 1263 (1991)

[IEE94] IEEE Standard Glossary of Software Engineering Terminology,

Institute of Electrical and Electronics Engineers, Inc. 1994

[Jac95] Jackson, Software Requirements and Specifications, Addison-

Wesley, 1995

89

[Jaf88] Jaffe, Completeness, Robustness, and Safety in Real-Time

Software Requirements Specifications: A Logical Positivist

Looks at Requirements Engineering, Ph.D. Thesis, University

of California, Irvine, 1988

[Kan95] Kaner, Software Negligence and Testing Coverage, The

Software QA Quarterly, Vol. 2, No. 2, 1995

[Lev95] Leveson, Safeware, Addison Wesley, 1995

[LHH94] Leveson, et.al., Requirements Specification for Process-Control

Systems, IEEE Transactions on Software Engineering, Vol. 20,

No. 9, September 1994

[LT93] Leveson, Turner, An Investigation of the Therac-25 Accidents,

IEEE Computer, Vol 26, No. 7, July, 1993

[Mey85] Meyers, On Formalism in Specifications, IEEE Software,

 January 1985

[Miy92] Miyaki, Comment: Computer Software Defects: Should

90

Computer Software Manufacturers Be Held Strictly Liable for

Computer Software Defects? 8 Computer and High

Technology Law Journal, 121 (1992)

[Mor89] Mortimer, Note: Computer-Aided Medicine: Present and

Future Issues of Liability, 9 Computer Law Journal, 177

(1989)

[MR97] Medvedovic, Rosenblum, Domains of Concern in Software

Architectures and Architecture Description Languages,

Conference on Domain-Specific Languages, USENIX

Association, October 15-17, 1997

[NLJ91] Slind-Flor, Supplier Pulls Software - Ruling Causes Uproar

National Law Journal, July 29, 1991, page 3

[NW82] Nelson and Winter, An Evolutionary Theory of Economic

Change, Belknap Press of Harvard University Press, 1982

[Nyc79] Nycum, Liability for Malfunction of a Computer Program, 7

Rutgers Journal of Computers, Technology and Law, 1 (1979)

[Owe80] Owen, Rethinking the Policies of Strict Products Liability, 33

Vanderbilt Law Review, 681

91

[Owe96] Owen, Defectiveness Restated:” Exploding the “Strict Liability”

Products Liability Myth, 1996 U. Ill. L. Rev. 743

[Par86] Parnas, A Rational Design Process: How and Why to Fake It,

IEEE Transactions on Software Engineering, Vol SE-12, No. 2,

February 1986

[Par90] Parnas, Evaluation of Safety-Critical Software,

Communications of the ACM, Volume 33, No. 6, June 1990

[Pet92] Petroski, To Engineer is Human, Vintage Press, NY, 1992

[Pin81] Grimshaw V. Ford Motor Co., 174 Cal. Rptr. 348 (Cal. Ct. App.

1981)

[Pou49] Pound, The Spirit of the Common Law, Beacon Press, 1949

[Pre84] Prentice v. Yale Mfg. Co., 421 Mich. 670 (Sup. Ct. MI, 1984)

[Pro84] Prosser, Keeton, Prosser and Keeton on Torts, 5th Edition,

West Publishing, MN, 1984

92

[RAO92] Richardson, Aha, O’Malley, Specification-based Test Oracles

for Reactive Systems, Proceedings of the ACM SIGSOFT ’89,

Third Symposium on Software Testing, Analysis, and

Verification (TAV3), Key West, FL, Dec. 1989

[Res98] Restatement Third, Torts: Products Liability, American Law

Institute Publishers, MN, 1998

[Rix86] Rix v. General Motors Corp, 723 P.2d 195 (Mont. 1986)

[RM98] Robbins, et. al, Integrating Architecture Description

Languages with a Standard Design Method, Proceedings of the

Twentieth International Conference on Software Engineering

(ICSE 98, Kyoto, Japan), IEEE Computer Society Press, April

19-25, 1998, pp. 209-218

[Roy70] Royce, Managing the Development of Large Software Systems:

Concepts and Techniques, ICSE 9 Proceedings (1970)

[RT88] Richardson, Thompson, The Relay Model of Error Detection

and its Application, IEEE Transactions on Software

Engineering, June 1993

93

[SB82] Swartout, Balzer, On the Inevitable Intertwining of

Specification and Implementation, Communications of the

ACM, Vol. 25, No. 7, July 1982

[Sch96] Schmidt, The Impact of Social Forces on Software Project

Failures, editorial, C++ Report, April 1996

[Sch99] Schach, Classical and Object-Oriented Software Engineering,

McGraw-Hill, 1999

[Smi94] Smith v. Keller Ladder Co., 645 A.2d 1269 (N.J. Super. Ct.

1994)

[Som92] Sommerville, Software Engineering, Addison-Wesley, 1992

[Tra65] Traynor, The Ways and Meanings of Defective Products and

Strict Liability, 32 Tenn. L. Rev. 363 (1965)

[Tra97] Tracz, DSSA (Domain-Specific Software Architecture)

Pedagogical Example. ACM Sigsoft Software Engineering

Notes, July 1995.

[TRK96] Turner, Richardson, King, Legal Sufficiency of Testing

Processes,Proceedings of the 15th International Conference on

94

Computer Safety,Reliability, and Security, Vienna, Austria,

Oct. 1996

[TWDP76] Twerski, et. al., The Use and Abuse of Warnings in Products

Liability, Design Defects Litigation Comes of Age, 61 Cornell

Law Review 495 (1976)

[Voa97] Voas, A Crystal Ball for Software Liability, IEEE Computer,

June 1997

[Web92] Weber, Bad Bytes: The Application of Strict Products Liability

to Computer Software, 66 St. John’s Law Review, 469 (1992)

[Win91] Winter v. G.P. Putnam’s Sons, 938 F.2d 1033 (9th Cir. 1991)

[Wit85] Witherell, How to Avoid Products Liability Lawsuits and

Damages, Noyes Publications, 1985

[Wol93] Wolpert, Product Liability and Software Implicated in

Personal Injury, Defense Counsel Journal, 519, October 1993

	List of Figures
	Acknowledgments
	Curriculum Vitae
	Abstract of the Dissertation
	Chapter One: ��Introduction
	Tort Law
	Enter Software
	The Research Question
	Contributions to Scholarship
	Overview of the Dissertation

	Chapter Two: ��Related Work
	Legal Research
	Legal Notions of Software Defects in Manufacture as Distinguished from Design

	Software Engineering
	Software Engineering Concerns for Social Expectations for Software Product Defects
	Software Engineering Notions of Software “Manufacture”

	Summary of Important Points

	Chapter Three:� �The Law of Products Liability in Tort
	The Common Law
	Products Liability
	Product “Defect”
	Essential Characteristics of the Classes of Product Defect
	Importance of the Classification
	Determination of Defect Class
	1.	Design specifications as an expression of intended design
	2.	Intended design in the manufacturing norm

	Summary of Important Points

	Chapter Four: ��Constructing Software Code
	The Kinds of Software Considered Here
	Constructing the Software Product
	The Software Development Process
	Code is the Product of a Human Effort
	Process Models
	Code and Fix
	Waterfall model
	Inevitable Intertwining
	Spiral Model

	Coders Must Face Design Issues

	Summary of Important Points

	Chapter Five: ��Defects in Software Source Code
	Is Software Subject to the Law of Products Liability?
	Personal Injury
	Software Code as a “Product” or “Component”

	Can the Costs of Products Liability be Easily Avoided?
	Research Question
	Classes of Defects that Originate in Code
	Design
	Manufacture
	An Example

	The Classification of Software Code Defects
	1. Does the “Deviation from the Norm” Test Suffice to Distinguish Code Defects?
	2. Does a Test Against “Design Specifications” Suffice to Distinguish Code Defects?
	a. No Specification Exists
	b. Some Specification Exists

	Summary of Important Points

	Chapter Six: ��Specification Insufficiency: Essence or Accident?
	Can the “Deviation from the Norm” Test be Adapted to Software?
	Can Software Specifications be Made Sufficient to Distinguish Defect Classes?
	Specification Insufficiency and Progress in Software Engineering
	a. Post-hoc rationalization
	b. Design Standards
	c. Formal Specifications

	A Difficulty Inherent to Software: Description as Product
	Enabled for Major Design
	Coding Skills Required

	More Fundamental Difficulties With Specifications
	Summary of Important Points

	Chapter Seven: ��Conclusions and Future Work
	Summary and Conclusions
	Contributions of the Work
	Future Work

	Bibliography

