
. .
Cal Poly CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

C Programs: Simple Statements and Expressions

C Program Structure

A C program that consists of only one function has the following form:

preprocessor directives

main function heading

{

declarations

statements

}

We have already seen some preprocessor directives and have discussed
some variable declarations.

Statements

Statements are instructions to be executed by the computer. C has a number
of different types of instructions. In the course we will study most of them.

Today we start with three basic types: function call, assignment and function
return.

Function Call

Function call has the following syntax:

<functionName>(<arg1>,<arg2>,...,<argN>);

Here, <functionName> is the name of the function (e.g., printf), and <arg1>,. . . <arg2>
are arguments that the function takes.

C distinguishes between C standard library functions and user-defined functions.

1

Functions in standard C library. a wide range of tasks in C are not per-
formed by C statements. Instead, these tasks are outsourced to a collection of
functions that is available for use with any C program. This collection is called
the standard C library.

These functions have already been implemented by the C developers: all you
need to do in order to use them is to provide a preprocessor directive #include
which would specify the exact part of the standard C library which contains the
function(s) you are using.

The following standard C library files contain functions important for our
course:

File Explanation Examples
stdio.h Standard Input/Output, File Input/Output printf(), scanf()
math.h Mathematical functions sqrt(), sin(), cos(), log(), exp()

stdlib.h Memory allocation functions, misc functions malloc(), free(), rand(), atoi()

string.h String manipulation functions strcpy(), strcat(), strlen()

time.h Functions related to time and system time clock(), localtime(), difftime()

(note, other components of standard C library exist, but they will not be
covered in the course).

To specify that the included file belongs to the standard C library put the file
name in angle brackets (<>) in the #include command:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

User-defined functions. User-defined functions are reusable program com-
ponents that the programmer elected to make structurally independent from
the main program. Each user-defined function must have a name, a type and a
list of input parameters (if any). The programmer is responsible for providing
proper definition and (if necessary) declaration of the function.

More on this - in two weeks!

List of standard library functions. You have already seen two I/O func-
tions: printf() and scanf(). The list below highlights some of the mathe-
matical functions available to you in C. See Appendix B. of the textbook for full
list.

Function declaration Library header file Purpose Example

int abs(int) stdlib.h absolute value abs(-4) = 4
double fabs(double) math.h abs() for floating point values fabs(-3.432)=3.432
double ceil(double) math.h smallest integral value ceil(7.453) = 7.0

no less than argument ceil(-4.53)= -4.0
double floor(double) math.h largest integral value floor(-4.56)=-5.0

no less than the argument floor(6.54) = 6.0
double cos(double) math.h cosine cos(0.0)=1.0
double sin(double) math.h sine sin(0.0) = 0.0
double tan(double) math.h tangent tan(0.0) = 0.0
double exp(double) math.h e

x (x is argument) exp(1.0)=2.71828. . .
double log(double) math.h natural logarithm log(exp(1.0))= 1.0
double log10(double) math.h base-10 logarithm log10(1000.0)= 3.0
double pow(double, double) math.h power pow(2.0,4.0) = 16.0
double sqrt(double) math.h square root sqrt(9.0)=3.0
int rand(void) stdlib.h pseudorandom number generator rand()

void srand(unsigned int) stdlib.h reset random number generator srand(100)

int main(). One user-defined C function, main() has special meaning in C.
This function represents the main body of the C program. As such, when the

2

executable file of the C program is loaded into main memory to be run by
the CPU, the execution of the program starts at the beginning of the main()

function.

In ANSI standard main() must have return type int and must have no

input parameters. The type of the function must be explicitly declared in
ANSI C (modern dialects of C do not require it, though).

Function Return Statment

Syntax. Function return statment has the following syntax:

return <Expression>;

Here, <Expression> is a C expression (see below).

Note, ANSI C standard requires a return statement to be the last executed
statement of any function (including main()).

As such, it is a good practice to put a return statement at the end of each
function as soon as the function is created.

For example, start your main() functions with the following stub:

/* Comment goes here */

int main() {

return 0;

}

Semantics. When return statement is encountered during the run of the
program, the following actions are performed:

1. Expression <Expression> gets evaluated.

2. Curent function terminates its operation.

3. The computed value is returned to the caller function.

4. If current function is main(), the program terminates its work.

Type match. The key rule to remember is that the value of the expression
in the return statement must have the same type as the declared type of the
function.

For example, main() is always declared as int main(). Therefore, the fol-
lowing code:

/* Comment goes here */

int main() {

return 1.234;

}

will result in a compiler error.

Assignment

Assignment statements are the building blocks of the C program. Assignment
statements allow variables to receive new values as a result of various computa-
tions performed within a program.

3

Syntax. The assignment statements we will be studying for now have the
following syntax:

<VariableName> = <Expression>;

Here, <VariableName> is a name of a program variable and <Expression> is
a C expression (see below).

Semantics. The assignment statement is evaluated as follows:

1. <Expression> is evaluated.

2. Computed value of <Expression> is stored in the memory cells allocated
for the variable <VariableName>.

Example.

int x, y;

float a,b;

x = 0;

y = x + 1;

x = x + x;

a = 2.0;

b = a / (y + x);

Constraints. The evaluation of the assignment statement is subject to the
following conditions:

1. Declared variable. Varibable <VariableName> must be declared prior
to its use in the assignment statement.

2. Type match. <Expression> must evaluate to a type compatible with
the declared type for the variable <VariableName>.

Expressions

At this point we concentrate on arithmetic expressions. The three general forms
of an expression are

1. <Operand> <Operation>

2. <Operation> <Operand>

3. <Operand> <Operation> <Operand>

C has the following operations:

Operation Arity Meaning Example
+ binary addition 5 + 6 evaluates to 11
- binary subtraction 6 - 5 evaluates to 1
* binary multiplication 4 * 3 evaluates to 12
/ binary integer division 4/5 evaluates to 0
/ binary division 4.0/5.0 evaluates to 0.8
% binary remainder 10 % 7 evaluates to 3
- unary unary minus - 4 evaluates to -4
+ unary unary plus +4 evaluates to 4

<Operand> can be any of the following:

4

• constant value (2, 5.6, etc.)

• defined constant (HUNDRED)

• variable name (currentStateVote)

• function call (log10(x))

• (arithmetic) expression in parentheses ((log10(x) + 5))

Evaluation, operation precedence. Arithmetic expressions in C are eval-
uated according to the mathematical rules. Generally speaking, given an arith-
metic expression in C, its evaluation proceeds as follows:

1. Using C operator precedence and associativity rules, the operation <Op>

with the least precedence (i.e., last to be evaluated) is established.

2. The expression is represented as <Operand1> <Op> <Operand2>1

3. Operand <Operand1> is evaluated.

4. Operand <Operand2> is evaluated.

5. The result of the operation <Op> applied to the results of evaluating
<Operand1> and <Operand2> is evaluated. This result is returned as the
value of the expression.

As seen, expression evaluation depends on operator precedence. The prece-
dence rules are:

Precedence level Operators
1. (highest) parentheses
2. +,- (unary)
3. *, /, &

4. (lowest) +, - (binary)

The associativity rule is:

Unary operators in the same subexpression and at the same prece-
dence level are evaluated right-to-left (right-associativity).

Binary operators in the same subexpression and at the same
precedence level are evaluated left-to-right (left-associativity).

Examples. Expression a + b*c - (15 + a * n) + 23 has the following prece-
dence of operations: ((a + (b*c)) - (15 + (a*n))) + 23.

Expression a + b + -c* -+-d has the following precedence of operations:
((a+b)+ ((-c) * (-(+(- d)))).

Expression b * c / e % f has the following precedence of operations:
((b*c)/e)% f.

Type of expression. Type conversion.

• int. If both operands (sub-expressions) in an arithmetic expression evalu-
ate to int values, then the expression evaluates to an int value.

• double/float. If both operands (sub-expressions) evaluate to float (or
double), the the expression evaluates to a float (double) value.

• mix. If one sub-expression evaluates to an int and the other to a float

(double), then the expression evaluates to a float (double).

Note. This is how the type of the division operation is determined: if both
operands are integers, integer division is applied, otherwise - floating point di-
vision.

1In case of binary operators. For unary operators, similar intuition holds, except, only one

operand gets evaluated.

5

