
. .
Cal Poly CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

C Programs: Strings

Strings in C

A string is a sequence of characters. C provides mechanisms for working with
string constants and string variables.

String Constants

A string constant is any text enclosed in double quotes: ”. Examples of string
constants are:

"This is a sentence"

"a"

"25"

"-123+76"

"***___***"

String constants can be #defined in the program:

#define NAME "Alex"

#define MESSAGE "------> ERROR:"

#define BREAKS "\n\n\n"

We have seen use of string constants in C programs in printf() functions:

printf("This is a sentence.");

printf("Here, ends a line.\n");

printf(BREAKS);

printf(NAME);

will produce the following output:

This is a sentence. Here, ends a line.

Alex

1

String variables

While C has special syntax for string constants, it does not have a special string

type.

Instead, C uses the definition above: a string is a sequence of characters, to
represent string variables. C has an atomic type char for character values. A
sequence of characters is an array of values of type char.

Thus, C uses character arrays to represent string variables.

Consider the following declarations:

char str[7];

char greeting[10] = "Hello!";

char alabama[10] = "Alabama";

char pacificStates[5][15] = {"California","Oregon","Washington", "Hawaii", "Alaska"};

These statements declare respectively: a string variable str of length 7 (char-
acters), which does not get any value assigned to it; string variables greeting
and alabama which get initial values assigned to them, and an array of strings

pacificStates, which gets an initial assignment for each string in the array.

String I/O

String variables can be used in printf() and scanf() functions. A string value

is indicated by a format string "%s" in the first parameter of both functions.

char name[20];

scanf("%s",name);

printf("%s\n", name);

Note: because name is an array, there is no need to use the & (address-of
operator) in the scanf function.

String assignment

Wouldn’t it be great if we could do this?

char str[10] = "Hello!";

char newStr[10];

newStr = str;

However, if you compile a program containing this code using -ansi -Wall

-Werror settings, you will get:

In function main:

error: incompatible types in assignment

pointing to the newStr=str statement.

So, how *do* we assign values to a string?

Variant 1: A string is a character array. We can assign values to individual
array elements. Consider, for example the following code fragment:

char str[10] = "Hello!";

2

char newStr[10];

int i;

for(i=0;i<10;i++) {

newStr[i] = str[i];

}

printf("%s = %s \n\n",str,newStr);

This fragment declares and initializes to "Hello!" a string variable str. It
then creates a string variable newStr, and in a for loop, assigns each element
of newStr the value of the corresponding character from str.

You can always treat string variables declared as char[] as character arrays
and work with this individual elements.

Variant 2: standard C library functions for managment of strings. Standard C

library includes string.h, a header file that contains a variety of string man-
agement functions. Most of traditional operations that need to be performed
on strings are covered in this library.

In the table below, the following new type constructs are used:

• char * name. As you know, char * name declares name to be a pointer

to a character. This is a generic way to identifiy a string (sequence of
characters) of arbitrary length.

• const char *name. This is used to specify that the parameter passed into
a function is input-only. For example, int foo(char * x, const char

* y) takes its first parameter x to be a call-by-reference modifiable
parameter. It takes the second parameter to be a call-by-value non-
modifiable one. As such, foo(x,"boo"); is an acceptable function call for
foo, whereas, it would not be acceptabe for the int foo(char *x, char

* y).

• size t. Values of type size t are unsigned integers (i.e., all be numbers
that can be used to represent a size of a memory chunk).

Function declarataion Meaning

char * strcpy(char *dest, const char *source) copy the contents of source into dest

char * strncpy(char *dest, const char *source, size t n) copy forst n characters of

source into dest.

char * strcat(char *dest, const char * source) append source to end of dest

char * strncat(char *dest, const char * source, int n) append up to n characters

of source to end of dest

int strcmp(const char *s1, const char *s1) compare two strings

int strncmp(const char *s1, const char *s2, int n) compare first n characters of two strings

size t strlen(const char *s) determine the length of the string

To assign a value from string variable to another, use strcpy().

String Comparison

Functions strcmp() and strncmp() are used to compare strings. The compar-
ison follows the lexicographical ordering of strings.

Recall, that we can compare char values. E.g., ’c’ < ’d’ returns 1 (true),
while ’w’ > ’x’ returns 0 (false).

Strings are arrays of characters, and they can be compared on character-
by-character basis. Comparison starts with the first characters in strings and
proceeds to the last characters. String s is less than string t if one of two
conditions holds:

3

1. String s is equal to a prefix of string t, but the length of t is greater than
the length of s.

2. String s starts with a prefix that is less than the prefix of t of the same
size.

Examples. "zone"< "zones". Both strings start with the same prefix "zone",
but the second string has more characters following it.

"table" < "task". The first two characters of both strings, "ta", coincide,
however, the third character is different, and ’b’ <’s’, making "tab" < "tas".
This implies that "table" < "task".

"aqualang" < "boost". While the length of the first string is greater than
the length of the second string, the first characters of the two strings are ’a’

and ’b’ and ’a’<’b’, implying the inequality.

Note: The order on the strings is essentially the same as the order in which
words occur in a dictionary, except it extends to non-dictionary words, to strings
containing other characters.

Task: Determine the order of the following strings: ”TABLE”, ’table’,
"Hello, World!", "Hello World", ",.", ".,".

strcmp(). C provides two functions, strcmp() and strncmp() to compare
strings. Both functions, compare their input parameters and return the follow-
ing:

• a negative number, if the first string is less than the second string;

• zero if both strings are equal;

• a positive number, if the first string is greater than the second string.

Consider the following code fragment:

char s[10] = "work";

char t[10] = "hard";

if (strcmp(s,t) < 0) {

printf("Work hard\n");

}

else {

if (strcmp(s,t) > 0) {

printf("Hard work\n");

}

else {

printf("hardwork\n");

}

}

"work" is greater than "hard", so, strcmp() returns a positive integer as the
result, and therefore, this code fragment will print "Hard work".

strncmp() works in a similar manner, only compares just the first n char-
acters of two strings. E.g., strncmp("move","movie", 3) returns 0, while
strncmp("move","movie",4) returns a negative integer.

4

