
. .
Cal Poly CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

C Programs: File Input/Output

File I/O in C

In C, the input can be read from the standard input device, (stdin) or –
from a file residing on disk. Similarly, the output can be sent to the standard

output device (stdout), or to a disk file.

The C functions for stdin/stdout I/O are scanf() and printf(). Similar
functions exist for file I/O.

Stream processing. C treats input and output as streams of data. Input
streams of data are used to read data in, output streams of data are used to
print data to. A disk file to be read from/written to is also treated as a stream.

stdio.h revisited. All file I/O functions are declared in stdio.h header file.

Opening and closing files. To open a file for either reading or writing, use
the fopen() function:

FILE * fopen(const char fileName[], const char mode[])

Here, fileName[] is the name of the file to be opened, and mode is the access
mode for the file. The access modes are:

Mode Meaning
"r" Open file for reading (input stream)
"w" Open file for writing; file created or truncated (output stream)
"a" Open file for appending (output stream)
"r+" Open file for reading and writing w/o destroying the file
"w+" Open file for reading and writing; truncate the file
"a+" Open file for reading and appending

FILE *. The return type of the fopen() function is FILE *. In C, values of
this type represent I/O streams. Variables of type FILE * can be declared in
the program and they will be used later in fprintf() and fscanf() functions.

To open a file and assign it to a FILE * variable, use the following code:

1



FILE * in;

FILE *out;

in = fopen("input.txt","r"); /* open file "input.txt" for reading */

out = fopen("output.txt","w"); /* create/overwrite file "output.txt", open it for writing*/

After this fragment is executed, two files will be open. input.txt will be
open for reading its content. output.txt will be overwritten with an empty file,
and will be ready for the output to be written to it.

fprintf() and fscanf()

To read and write from files, use fprintf() and fscanf() functions.

Both functions work similarly to printf() and scanf() respectively, except
they take one more argument: FILE * value associated with the appropriate
file.

Consider the following code:

FILE * in;

FILE *out;

int x;

in = fopen("input.txt","r"); /* open file "input.txt" for reading */

out = fopen("output.txt","w"); /* create/overwrite file "output.txt", open it for writing*/

fscanf(in, "%d", &x);

fprintf(out, "The number is %d\n", x);

After the two files are opened for reading and writing respectively, the pro-
gram tries to read an integer value from the input.txt file and then prints it
together with some text to the output.txt file.

Closing the file

Before your program ends, make sure you close all open files. This is done
using the fclose() function:

int fclose(FILE * fp);

The function returns 0 if the file was succesfully closed.

End of File

Each file ends at some point, so it is impossible to read from a file infinitely many
times. When fscanf() reaches the end of the file, it returns a special end-of-file
marker, which, in C is represented by the symbolic constant EOF. fscanf() is
declared as:

int fscanf(FILE *stream, const char *format, ...);

so, EOF is an int value.

Here is an example of reading numbers from a file until the file ends:

2



FILE * in;

int x;

int status; /* we use it to catch the return value of fscanf() */

in = fopen("input.txt","r"); /* open file "input.txt" for reading */

do {

status = fscanf(in, "%d", &x);

if (status != EOF) {

printf("%d\n", x);

}

while (status != EOF);

fclose(in);

3


