
. .
Cal Poly CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

C Programs: Structures

Structure Types

Structures. A structure is a collection of data values, possibly of different

types that jointly describes one physical or logical object.

Example. A person has a first name, middle name, last name, a gender and
a birth date. If that person is a student, (s)he will also have a major, a status

(freshman, sophomore, etc. . . ) and a GPA.

There is more than one value that describes a person or a student. Gener-
ally speaking, one can use multiple variables to describe each individual aspect
of the person/student, but handling this would be inconvenient, for example,
in situations, where you need to pass the information about a person into a
function.

struct type definition in C. C allows us instead to create a special new

data type that combines all desired values into a single object. The struct

declaration has the following syntax:

typedef struct {

<Type> <Name>;

...

<Type> <Name>;

} <structName>;

Here, typedef and struct are keywords; <Type> <Name> pairs declare indi-

vidual fields of the structure (they are just like a regular variable declaration)
and <structName> is a C identifier that can be used to refer to the newly

declared data type.

Example. Consider the following two declarations:

typedef struct {

char firstName[10];

char lastName[10];

int yearOfBirth;

1



float GPA;

char major[10];

} studentType;

studentType s1, s2;

The typedef declaration declares a structure type studentType, which con-
sists of five fields, firstName, lastName, yearOfBirth, GPA and major.

The second declaration, creates two variables, s1 and s2 of type studentType.

Access to fields

Each field of a struct type variable is a separate independent value. To access
it, we use the . (dot) operator. The syntax is:

<StructVarName>.<FieldName>

For example, to access the first name of a student in the variable s1, we write

s1.firstName

This can be used both on left- and right-hand sides of the assignment state-
ment.

Example. In the example below, information about one student is read from
standard input stream, while information about another student is assigned
directly.

typedef struct {

char firstName[10];

char lastName[10];

int yearOfBirth;

float GPA;

char major[10];

} studentType;

studentType s1, s2;

scanf("%s", s1.firstName); /* note the lack of use of & */

scanf("%s", s1.lastName);

scanf("%d", &s1.yearOfBirth); /* note the use of & */

scanf("%f", &s1.GPA);

scanf("%s", s1.major);

strcpy(s2.firstName, "Bob");

strcpy(s2.lastName, "Smith");

s2.yearOfBirth = 1990;

s2.GPA = s1.GPA;

strcpy(s2.major, "CS");

Access to whole structure

Unlike arrays, struct type variables are NOT POINTERS. Therefore, vari-
ables of struct types:

• can appear on the right- and left-hand sides of the assignment statments:

s1 = s2; /* all the values from s2 are copied into s1 */

2



• are passed to function by value only.

• can be used as return types of functions.

3


