Winter 2012 CPE 101: Fundamentals of Computer Science | Alexander Dekhtyar'

Lab 1: Your first C program(s)

Due date: Monday, January 9, beginning of the lab period.

Lab Assignment

Assignment Preparation

Lab type. This is an individual lab. Each student will submit his/her
set of deliverables.

Collaboration. Students are allowed to consult their peers! in completing
the lab. Any other collaboration activities will violate the non-collaboration
agreement.

Purpose. You will encounter a number of C programs, will learn how to
compile, run, edit and create C programs and continue your acquaintance
with the CSL Linux environment. You will get acquainted with the testing
framework that we will be using in the upcoming labs. You will also down-
load files from the course web page and learn how to view Postscript and
PDF files on CSL machines.

Preliminaries. You are assumed to have successfully completed the setup
instructions from Lab 0. In particular, I am assuming that (a) you can log
into your CSL account; (b) you can open multiple terminal /xterm windows;
(c) you can navigate the directory structure in your home directory; (d) you
can create and edit text files using your preferred text editor.

LA peer for the purpose of CPE 101 is defined as "student taking the same section of
CPE 101”.

The Task

Note: Please consult the instructor if any of the steps are unclear, or if the
reality does not match the instructions below.

1. Set up a directory for Lab 1. You should have the cpe101 working
directory created in the home directory of your CSL account from Lab 0.
Change to this directory. Create a directory for Lab 1. Change to the newly
created directory. You will be putting all files you use in this lab in it.

2. Get the files! Your next task is to put a few files into your Lab 1
directory. Perform the following tasks.

e Start a web browser. Firefox is the most popular browser in the Linux
world. You can start it by typing

> firefox&

in the terminal window (notice the 7€, it will let you continue using
your terminal window for further commands!), by clicking on the web
browser icon on the system menu, or by selecting Applications —
Internet — Firefox Web Browser from the system menu.

Google’s Chrome browser is also available.
e Open the web page for the course. The url is
http://www.csc.calpoly.edu/~dekhtyar/101-Winter2012/

e On the course web page locate the Labs section. Find ”"Lab 1”7 line
in the table. You should see links to the Postscript and the PDF
versions of this lab handout (this document), and a third link, "Data
and Tests”. Follow the latter link. A new page, containing the list of
files necessary for Lab 1 will open.

e From this page (http://www.csc.calpoly.edu/~dekhtyar/101-Winter2012/labs/labl.html),
you need to download the following files into your Lab 1 directory:

— hello.c: a simple Hello, World! C program.
— magic.c: a C program illustrating the use of our test framework.

— checkit.h: a C file containing testing macros (read below).

Download the files by opening them in the browser and then selecting
the File— Save Page As option from the browser’s menu bar. Make
certain the files are saved in your lab 1 directory.

e You need to get one more file, but this time, you will be using Linux
cp command to copy the file to your Lab 1 directory. The file name is
aboutme.alex and the file is located in the ~dekhtyar/www directory.
Use the following command to copy it:

> cp “dekhtyar/www/aboutme.alex .

Note: ”.” in this command refers to current directory. The command
reads "Copy aboutme.alez file from the ~dekhtyar/www/ directory
into the current directory.

e Type 1s to confirm that all four files are now located in the your Lab
1 directory.

e Let us now make sure you can peruse both PDF and Postscript files. In
your browser, return back to the main course page. Find the handout
for Lab 1 on the course web page. You will be offered two download
formats: PDF and Postscript. Select download in PDF format. Se-
lect "Open with ...Document Viewer" if prompted. The application
that opens your PDF file is called evince.

e Now, download the file in Postscript format. In the dialog window,
select ”Save to disk” and save the file to your cpe101/Lab1 directory.

e Use the 1s command to make sure that your directory contains the
Postscript file you downloaded. Type

> gv <FileName> &

replacing <FileName> with the name of the downloaded PostScript file
(it will have the extension .ps). The program that opens the file, gv, of
GhostView is a PostScript file viewer. Make sure you can navigate the
document (move from one page to another), and study other features
of gv that are immediately available to you. Exit gv.

e Now, type
> evince <FileName> &
again, replacing <FileName> with the name of the downloaded PostScript

file. Note, that evince can be used to view PostScript files as well as
PDF files.

You are now ready to view/peruse all course materials.

3. Compile and run the programs. Time to put the files you down-
loaded to use.

e Let’s view the contents of each file. The command that prints the
contents of a file to a terminal is more. The format of the command is

more <filename>

where <filename> is the name of the file you want to view. Using the
more command, output the contents of hello.c and then - magic.c
to the terminal.

You can also output the contents of checkit.h to the terminal, but
the C code in that file may be rather hard to read /understand.

Study the contents of the hello.c file. This is the famous Hello, World!
program written in C.

Let us compile this program. You will be using GNU C++ compiler
gcc to compile your C programs in this course. gcc recognizes pure C
programs and compiles them accordingly. Type

> gcc hello.c

Nothing happened. You get a new Linux command-line prompt. What
gives? Well, let’s see if anything has changed in your Lab 1 directory.
Type

> 1ls -al

If you did everything correctly, the output will look (roughly) as fol-
lows:

total 12

drux------ 2 dekhtyar Faculty_Users 512 2009-09-20 14:26 .

drwx------ 3 dekhtyar Faculty_Users 512 2009-09-20 14:26 ..
—ry--—-—---- 1 dekhtyar Faculty_Users 369 2009-09-20 14:18 aboutme.alex
—“Irwx-—-—----— 1 dekhtyar Faculty_Users 5424 2009-09-20 14:18 a.out
“rw--—---—-— 1 dekhtyar Faculty_Users 2340 2009-09-18 14:30 magic.c
—ry--—-—---- 1 dekhtyar Faculty_Users 364 2009-09-18 14:29 hello.c

There is a new file, a.out, which was not there before. And (if your
terminal if set up right, this file name will be green). This is the
result of compiling hello.c file. (It’s green because this is how Linux
terminal marks executable files).

Let us run this program. Type
> a.out

What’s the result? Congratulations, you just ran your first C program
(albeit, you did not write it).

Note. If the above command does not produce expected results (and
you get a "a.out: command not found" error message, try running
a.out as follows:

> ./a.out

Use the same trick (./ in front of the program name) for all other
commands to run executable files produced by the C compiler in this
lab.

Let us now examine the second program. Use more command to view
its text again. The magic. c file contains a lot of comments that try to
provide brief explanations of each line of code. Read these comments
carefully.

We will be compiling magic.c using a more complex command. In
particular, this command will ensure that gcc does all of the following
things:

uses ANSI C standard for syntax checking (-ansi flag);

reports all compilation errors and warnings (-Wall flag);

— compiles using strict rules - all warnings are treated as errors
(-Werror flag);

— tells gece to actually correctly process the sqrt () reference (-1m
flag);

— changes the name of the output executable file from the default
a.out (-o option);

Type

> gcc —ansi -Wall -Werror -lm -o magic magic.c
> 1s

If you typed the gcc command correctly, you now should have an
executable file magic in your directory.

Run the magic program. The output you should see is

Test passed on line 34.

Test passed on line 35.

Test passed on line 36.

Test FAILED on line 41. 4 is 4, expected 5.
Test FAILED on line 42. 2+3 is 5, expected 4.

We will discuss what this output means in Task 6.

Note: For most, if not on all labs and programs, we will be using
the gcc -ansi -Wall -Werror -1m command to compile your sub-
missions. This will force you to write code in pure ANSI C, and will
force you to identify, debug and remove all and any compile-time errors
and warnings.

5. Create your first program. Since you already have the Hello, World!
program, the first program you create will be more complex.

e You will be modifying the hello.c program. First make a copy of
it, that you will be using. Using the cp command make a copy of
hello.c. Name your new file aboutme. c.

e Edit aboutme. c file using a text editor you are comfortable with. You
have to change the contents of the aboutme. c in the following manner:

1. All lines in a C program that start with "/*" and end with "*/".
These lines are called comments. C compiler ignores all text in
these lines. This text is for the programmers to specify what
program this is, who created it, etc. ...

Modify comments found in aboutme.c to include the following:

— mention that Alexander Dekhtyar is the instructor of CPE
101.

— the section you are in.

— your name.

— change the title of the program to indicate that this is an
"About me" program.

Note: All changes above are to be done ONLY in the comment
lines.

2. Now, edit some code. Examine the code of the current program.
It should be clear by now, that the actual printing of the "Hello,
World!" text is accomplished by the

printf ("Hello, World!\n");

line. Note the following about this line:

— C programs consist of statements. printf ("Hello, World!\n")
is a statement of the C program.

— printf () is a special C function whose purpose is to output
information to screen. While we will learn much more about
printf () in near future, for now, we use its simplest version
as above: the text to be put on screen is provided in the
parentheses.

— The line ends with a semicolumn (”;”). In C, semicolumns
are used to separate different statements. When you edit
your program below, each printf statement must end with
a semicolumn. Forgetting to include one for each statement is
the single most common compilation error you will encounter
during this course.

— The text to be printed, Hello, World! appears in dou-
ble quotation marks (7). C uses double quotes to represent
strings, i.e., textual information the program deals with.

— The text inside the double quotation marks ends with "\n but
the output (as observed in previous runs) does not contain
"\n". What is it? To determine what "\n" does, delete it
from the line, (leave the line to be printf ("Hello, World!");
save the program, compile it (use

> gcc —ansi -Wall -Werror -1lm -o aboutme aboutme.c

command), and run it. What is the difference between run-
ning aboutme and a.out program that you got by compiling
hello.c? Can you figure out what "\n" means and does?

3. Restore the printf statement to its original form. Add another
printf statement immediately below the first one. Type

printf ("\n My name is <Name>.\n");

replacing <Name> with your name (in my case, it’d be Alexander
Dekhtyar). Save the program, compile and run it. What do you
see now?

4. Edit the program to add more printf statements. The text in
the statements should contain some brief information about you
- your major at Cal Poly, when you joined Cal Poly, why you want
to pursue Computer Science/Computer Engineering/Software En-
gineering (or, if not one of these majors, why you are interested
in programming), as well as some of your hobbies.

A short version of such text for your isntructor is available in the
aboutme.alex file (remember — you copied it some time ago).
This file contains the output of the instructor’s version of the
aboutme. c program.

Please note, that the text you put should be readable (i.e., well-
formatted, including line breaks in reasonable places), and should
be truthful. I may use the outputs generated by your program in
determining group and pair designations for future labs and/or
program assignments.

6. Get acquainted with our testing framework. In our study of
programming and software development, testing will play an important role.

We define testing as the set of activities a software developer performs in
order to ensure that the program (s)he is working on performs as expected
and produces correct results.

In the first half of the course, we will use the checkit.h framework to
test your code. checkit.h (developed by Dr. Aaron Keen for use in CPE
101) is a collection of C preprocessor directives (otherwise called macros)
that can be used in C programs to test how parts of the program perform.

magic.c uses one directive defined in checkit.h. The directive is checkit_int ().
This directive compares the values of two integer C expressions and reports
whether the values supplied in the code were the same (successful test) or
different (failed test). magic.c uses checkit_int() five times. The first

three times yield success while the last two times result in failed tests. The
following expressions are compared:

Test First Expression Second Expression Result

Test 1) 5 Success
Test 2 2+3 5 Success
Test 3) 1+4 Success
Test 4 4 5 Failure
Test b 243 4 Failure

Your assignment is as follows. In addition to the five tests above, magic.c
contains ten more tests (tests #1 through #10) in comments. Each test is
incomplete. The first expression for each test is provided, while the second
expression is replaced with the <?> placeholder. You need to:

1. Uncomment all checkit_int () tests in the program.

2. For each uncommented checkit_int () test, substitute the <7> place-
holder with the C constant which makes the test succeed.

This is best achieved in a step-by-step fashion. Uncomment the first test.
Replace the placeholder with the constant integer value that makes the test
succeed. Compile the program (using the gcc -ansi -Wall -Werror -1lm
-0 magic magic.c command). Run the program. If the test fails, replace
the incorrect constant with the correct one. If the test succeeds, proceed to
uncomment the next checkit_int () test.

Note, that if you try to compile the program with o checkit_int () test, in
which the <?> placeholder is not replaced, the compiler will report an error.

Example. Consider the following checkit_int () test:
/* checkit_int (1+2+3, <7>); */

The first expression provided to the test is 1+ 2+ 3. We can compute the
value of this expression: 1+ 2+ 3 = 6. We uncomment the test and replace
the <?> placeholder with the computed value 6:

checkit_int (1+2+3, 6);

After this, we compile the program and run it to ensure that the test
succeeded.

Note. checkit_int() test contains printf () statements which output
whether the test was successful or failed. The printed message reports the
line number in the C program from which the test originated. This allows
you to uniquely determine which tests are being reported, which specific
tests succeeded and which - failed.

7. Submit your programs. You are at the finishing line for this lab
assignment. All that is left is to submit your work. You will be submitting
two files, your aboutme.c program and your magic.c program modified as
specified above.

In all your coursework, you will be using a program called handin to
submit your work. The typical submission format for handin is

> handin <instructor> <assignment> <fileNamel> <fileName2> ...
Here,

e <instructor> is the CSL Loginld of your course instructor. My
loginld is dekhtyar.

e <assignment> is the designation of the assignment, for which you are
submitting. Current lab assignment designation is 1ab01.

e <fileNamel>, <filename2, ... are the names of all the files you
wish to submit. For this lab you are submitting just one file, aboutme. c.

To submit, first ssh to unix1, unix2, unix3 or unix4, then navigate to
the Lab 1 directory and issue the following handin command:

> handin dekhtyar 1labOl1 aboutme.c magic.c

(your entire session should look similar to this (your directory paths may
be different):

> ssh unixl

Password:

unix1> cd cpel01/lab01

unix1> handin dekhtyar 1labOl aboutme.c magic.c
unix1l> exit;

>

Note: You can resubmit your files as many times as you want until the
deadline. Past the deadline, submission will be kept open for 24 hours to
collect any late submissions (you can submit as many times in that period,
but you run the risk of earning progressively larger late penalties), after
which, the submission will be closed. Once the submission is closed, all
subsequent attempts to use handin for the particular assignment will be
rejected.

Good Luck!

Appendix C: Working on CSL machines remotely.

Due to limited time the labs will be open in the upcoming quarter, you may
have to work on some course assignments from your home machine and/or
laptop on various occasions. Fortunately, if you have a desktop/laptop com-
puter, you can connect remotely to CSL machines. All programs that you
write in CPE 101 will use only a single terminal window for input/output,
and therefore, working via remote connection is a feasible way to complete
all assignments. Additionally, you can set up an environment that would al-
low you to do your work on your machine and simply use remote connection
for submission of completed work.

Note: Regardless of where you complete your work, please note that I
will be grading your code on CSL machines. It is your responsibility to
ensure that the code you submit runs properly on CSL machines.

MS Windows Computers

If your computer runs a version of MS Windows OS (XP, Vista, Windows 7,
etc), you can download a few small programs to establish remote connection
to CSL machines. You can also install a well-known Linux emulator which
includes gcc compiler.

Remote connectivity. You need two programs: an ssh client for con-
necting to the CSL workstations and a file transfer client for transferring
files between local and remote machines.

e SSH client. SSH, a.k.a., Secure Shell Protocol is the means of infor-
mation exchange between computers, which allow one computer to
remotely access another. Download and set up a Windows SSH client
PuTTY, which is found here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Upon download of the executable (putty.exe) place it on the desktop
and start the program. In the window that opens do the following:

1. enter one of the following CSL server names to connect to:

unixl.csc.calpoly.edu
unix2.csc.calpoly.edu
unix3.csc.calpoly.edu
unix4.csc.calpoly.edu
vogon.csc.calpoly.edu
falcon.csc.calpoly.edu

2. Select ”SSH” radio button.

10

3. Open the connection. You will be prompted with the information
about the publich key signature of the server you are connecting
to and asked if you want to proceed. Answer ”Yes”. A terminal
window will open, and will prompt for user’s loginld (enter your
CSL loginID) and password (enter your password). If successful,
you will see the CSL Linux prompt appear.

e File Transfer Client. I use WinSCP. It can be downloaded from here:
http://winscp.net/eng/download.php

You can download either the installation package or a single portable
executable.

Local Environment. The best way to set up your work under a Windows
OS is to download Cygwin - a Linux emulator for Windows. You need to
download and install both Cygwin and the XWindows emulator. Cygwin can
be obtained from:

http://www.cygwin.com/

Download and run Cygwin’s setup.exe file (make sure you have Internet
connection when you run it). setup.exe will allow you to select what you
want to install (for simplicity, you can choose the default packages — it is
sufficient for our purposes), and will allow you to install the XWindows server
as part of the overall installation process.

Linux

If your machine runs one of the multitude of Linux flavors, then, you can
access CSL machines remotely using the following command:

> ssh <loginID>@<server>.csc.calpoly.edu

Here <loginID> is your CLS login Id and <server> is the name of one of
the CSL servers (see list above).

Also, all Linux installations come with gcc compiler installed. So, you
can use your favorite text editor and gcc to reproduce the lab environment.

MacOS X

If you have an Apple machine running MacOS X, you essentially have a copy
of a Linux alternative called FreeBSD running.

Remote connection. MacOS X comes with its own SSH client. The
instructions on how to set it up can be found at

http://www.panix.com/help/sw.macosx-ssh.html.

11

Local environment. MacOS X has its own terminal emulator, which you
can use to enter command from command line. gcc compiler is usually not
installed on MacOS X systems, however, it can be downloaded from

http://connect.apple.com/

See
http://developer.apple.com/tools/gcc_overview.html

for the overview of gcc. Registration is required, but the download is free.

12

