
. .
Winter 2011 CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

Lab 12-2: Strings, Functions and Bioinformatics. . .

Due date: Monday, March 5, beginning of the lab period.

Lab Assignment

Assignment Preparation

This is Part 2 of Lab 12. You continue working on it with you Lab 12-1

partner.

Purpose. The lab allows you to practice the use of strings in C programs.
All lab assignments come from the area of bioinformatics, and all programs
are designed to output information useful for biologists and biochemists. More
about the bioinformatics aspects of this assignment below.

Programming Style. All submitted C programs must adhere to the pro-
gramming style described in detail at

http://users.csc.calpoly.edu/∼cstaley/General/CStyle.htm

When graded, the programs will be checked for style. Any stylistic violations
are subject to a 10% penalty. Significant stylistic violations, epsecially those
that make grading harder, may yield stricter penalties. Also note the the Lab
2 requirement for the content of the header comment in each file you submit
applies to each assignment (lab, programming assignment, homework) in this
course.

Testing and Submissions. Any submission that does not compile using the

gcc -ansi -Wall -Werror -lm

compiler settings will receive an automatic score of 0.

Program Outputs must co-incide. Any deviation in the output

is subject to penalties. PLEASE, USE BINARY EXECUTABLES

PROVIDED BY THE INSTRUCTOR!. The exception is made in case of
floating point computations leading to differences in the last few decimal digits.

1

You can check whether or not a program produces correct output by running
the diff command.

Please, make sure you test all your programs prior to submission!

Feel free to test your programs on test cases you have invented on your own.

Assignment

Please refer to the Lab 12-1 handout for the background information on bioin-
formatics.

The second part of the lab consists of three programs.

Problem 4: GC-percentage computation.

GC-percentage. Given a DNA sequence S = s1 . . . sN , a GC-percentage of S

is the percentage of characters in S that are either ’G’ or ’C’.

For example, is S =ATGGTTCTTA, the GC-percentage of S is 0.3 (or 30%), as
S contains two ’G’s and one ’C’ out of 10 characters.

GC content refers to the percentage of DNA bases that contain either G
(guanine) or C (cytosine). DNA is the genetic material of life that encodes
instructions for making building blocks of living cells proteins. DNA is a linear
polymer that contains information in the order/sequence of bases. Four bases
found in DNA are G, C, T, and A. The frequency of bases in a DNA polymer
varies among different organisms. GC content of entire genome (all DNA of one
organism or species) can be used to distinguish two closely related species or
to find a foreign gene in a genome (a gene that jumped species; for example,
viruses can transfer genes from one organism/species to another).

In addition, GC content can vary between different functional regions within
one genome. When analyzing a new genome, finding regions of high or low
GC percentage can point to particularly interesting regions (e.g. protein coding
genes, origin of replication). Most molecular biologists use GC content of small
regions of DNA to choose primers (molecular tools) for DNA amplification by
PCR.

Task. Write a program, gcp.c, that reads a DNA string in nucleotide alphabet
from standard input, computes the GC-percentage of the string and prints it
out.

For input we will use the same files (dna-testNN and dna-fragmentNN) as
we used for the Lab 12-1 programs.

Your program shall read the string, output it (prefacing it with the text
"Sequence : " (notice the two spaces). On the next line, your program shall
print the text "GC-content: " followed by the computed GC-percentage num-
ber, formatted to display two (2) digits after the decimal point.

Example. Here is an example of how the output of your program must look.

$cat dna-test04

ATGAAACCCGGGTGA

2

$ gcp < dna-test04

Sequence : ATGAAACCCGGGTGA

GC-content: 53.33

Functions. You shall add a new function to you genomics.c function library
(see Lab 12-1 handout). As usual, the appropriate function declaration also
needs to be added to the genomics.h file. The function prototype is

void updateGCCount(char s[], int * gc, int * at);

The function takes as inputs three parameters. The first one, char s[] is the
DNA string whose GC-percentage needs to be computed. The second and third
parameters are references to integer variables. One, gc represents the current

count of ’G’ and ’C’ occurrences in the observed DNA strings. The other one,
at represents the current count of ’A’ and ’T’ occurrences in the observed
DNA strings.

The function shall sweep through the contents of s and update the gc and
at counts appropriately.

Note: This function is a bit of an overkill for the task at hand. However, in
many scenarios biologists need to find a combined GC-percentage of multiple
DNA strings (e.g., DNA strings representing two different chromosomes of the
same organism). updateGCCount() is handy in such situations. (Also, keeping
both GC- and AT- counts is unnecessary, but convenient on occasion).

You must write the int main() of your GC-percentage computation program
in a way that uses (calls) updateGCCount().

Problem 5: Consensus Sequence.

This is the only program in this lab that will take a different type of input.

Definition. Given a set of DNA strings of the same length in the nucleotide
alphabet (usually representing the same DNA fragment for different related
species/organisms), a consensus sequence is a string in a nucleotide alphabet
that has at each position the nucleotide that shows in the plurality of DNA
strings at that position.

Example. Consider the following collection of three DNA strings:

GTTAC

GATAA

GAATC

The string GATAC is the consensus sequence for this set of strings. G appears
in all three strings in position 1, A appears twice in position 2, T appears twice
in position 3, A appears twice in position 4, and C appears twice in position 5.

Some sets of strings can have multiple consensus sequences. E.g., the set of
four strings:

TTGCA

TTGGA

3

TTGCT

TTGGT

has four consensus sequences: TTGCA, TTGCT, TTGGCT and TTGGT - in the last two
positions we have even number of G and C, and A and T nucleotides respectively.

Task. Your task is to write a program, consensus.c, which reads 10 nu-
cleotide sequences from the standard input (all sequences will have the same
length) and outputs a consensus sequence for these 10 sequences.

In case when there are multiple possible consensus sequences, your program
shall report any one consensus sequence.

Example. — Here is an example of running this program.

$ cat seq-test02

ATCGATCGAT

ATCGATCGAT

ATCGATCGAT

ATCGATGGAT

ATCGATGGAT

ATGGATGGAA

ATGGATAGAA

ATGGATAGAA

ATGGATTGAA

ATGGATTGAA

$ consensus <seq-test02

ATCGATCGAT

Notes. Feel free to implement this program in any way you find convenient.
There are no required functions for this program. You are allowed to define
functions that help you simplify your int main(), but, please, declare and
define them directly in the consensus.c file.

Program 6: Näıve Gene Predictor. Gene prediction is one of the most
popular tasks biologists engage in when analyzing DNA sequences. Most of
DNA does not carry any information. The important part of the DNA, coding
sequences or genes contain information that is later transcribed into RNA and
translated into proteins. Being able to find genes, therefore, is important.

A computer algorithm that analyzes a DNA sequence and finds DNA frag-
ments that look like they can be genes is called a gene predictor. A variety
of gene predictors has been developed in the past 15 years. Some of them are
rather complex, but some use very simple observations about the nature of genes
to base their predictions on.

Your task is to create a very simple gene predictor. It will use the following
information about the structure of genes1:

1Technically, this gene predictor will only work for the DNA of prokaryotes — simple

single-cell organisms like bacteria.

4

1. Most genes start with a Methionine (M) amino acid. The codon for Me-
thionine is ATG. When Methionine serves as the beginning of a gene, it is
commonly referred to as the start codon.

2. Genes end on one of the so called stop codons. There are three stop
codons in the genetic code: TAA, TAG and TGA.

3. Genes can occur on either the positive (top) strand of the DNA molecule,
or on the negative (bottom) strand.

4. Genes can occur on any reading frame of either the top or the bottom
strand.

5. The start and stop codons of a gene must be on the same reading frame.

Write a program geneSearch.c which works as follows. It starts by reading a
DNA string in a nucelotide alphabet from standard inputs. The program shall
print the string read, and then, for each frame of the given DNA sequence, it
shall perform the search for a suitable candidate gene using the observations
stated above. Essentially, your program shall look for an occurrence of the
start codon ATG on a given reading frame. Once found, your program shall
look for the occurrence of one of the stop codons further ”downstream” from
the occurrence of the start codon.

Since the reading frame may contain multiple occurrences of both the start

and the stop codons, use the following approach:

• Try to make your gene sequence as long as possible.

• For this, choose the earliest occurrence of the start codon,

• . . . and the latest occurrence of the stop codon on the given reading frame.

This method allows you to predict at most one gene per reading frame for up
to six predicted genes total.

Your program shall first search for the predicted genes on the three reading
frames of the positive strand, and then – on the three reading frames of the
negative strand (recall – the negative strand is the inverse complement of the
positive strand).

For each prediction, your program shall output the frame number (from 0
to 5, as it so happens in this program), the starting and ending positions of
the predicted gene sequence and the actual sequence of nucleotides forming the
predicted gene. Both the start codon and the stop codon must be included.

Examples. Your code shall provide the same ouput as the instructor’s code.
Please refer to the examples below (as well as instructor’s executables) for exact
output format. Please notice the spacing and other features of the output.

In the first example, the gene is on the first reading frame (a.k.a., frame 0)
of the positive strand (start and stop codons are highlighted in the input string
for your convenience, the highlights are not part of the terminal session).

$ cat genetest01

AAAATGAAACCCTAGAACCC

^^^ ^^^

$ geneSearch < genetest01

5

AAAATGAAACCCTAGAACCC

Positive strand:

=> Frame 0: [3, 15]

ATGAAACCCTAG

Negative strand:

In the second example, the start and stop codon are found on the first frame
of the negative strand (frame 3):

$ cat genetest03

AAACTAGGGTTTCCCTTTCATAAA

^^^ ^^^

$ geneSearch < genetest03

AAACTAGGGTTTCCCTTTCATAAA

Positive strand:

Negative strand:

=> Frame 3: [20, 2]

ATGAAAGGGAAACCCTAG

As the negative strand is read right to left, it will contain the inverse compli-
ment of CAT (see underlined above), which is ATG, i.e. our start codon on the
first negative reading frame. Further down on the same reading frame, there is
an inverse complement of CTA, whose inverse complement is TAG, i.e., the stop

codon.

Note how the output is organized in this case. The coordinates of the pre-
dicted gene are shown in the inverted order, but they reference the positive
strand, hence the start codon has a higer position

Our final example shows how the predictor handles multiple start and stop
codons on the same reading frame.

$ cat genetest04

AATGTTTATGGGGTAGCCCTAATTTGGG

--- ~~~ ~~~ ---

$ geneSearch < genetest04

AATGTTTATGGGGTAGCCCTAATTTGGG

Positive strand:

=> Frame 1: [1, 22]

ATGTTTATGGGGTAGCCCTAA

Negative strand:

Here, two start codons and two stop codons are seen on the second positive
frame (frame 1). The codons underlined with "---" are used for gene prediction
by the program.

Functions. My program uses a number of functions already defined in genomics.c,
but does not introduce any new functions. Your program can include functions
for certain parts of the task. Put all functions you define for this program (if
any) in the geneSearch.c file.

Testing. The inputs to your program are the same dna-testNN and dna-fragmentNN

test files used for other Lab 12 programs. Additionally, we constructed a few
extra tests in the files names genetestNN.

6

Submission.

Files to submit. Each pair submits one set of files from one account. In
addition to files specified in Lab 12-1 description, each team needs to submit
the following files:

The following files are mandatory:

gcp.c, consensus.c, geneSearch.c

Submission procedure. You will be using handin program to submit your
work. The procedure is as follows. Ssh to unix1, unix2, unix3, or unix4. The
handin command is:

> handin dekhtyar lab12 <your files go here>

Notice that there is only one handin directory for both parts of Lab 12.

7

