
. .
Cal Poly CPE 101: Fundamentals of Computer Science I Alexander Dekhtyar
. .

C Programs: Boolean Expressions, Conditional Statements

Boolean Expressions (Comparisons, Conditional

Expressions)

Truth and Falsehood

C does not have a specially designated data type to represent truth and falsehood
values. (in other programming languages this is known as boolean type).

Instead, C uses its int type to represent truth and falsehood. The values of int
type map to boolean (truth) values as follows:

Truth value int value
false 0
true any non-zero int

Comparisons

When two values are compared, the result of the comparison is a truth value (is
it true that X is greater than Y ? yes, it is true. . . no, it is false. . .).

In C, comparison of two values is an expression. C uses relational and equal-
ity operators to construct comparison expressions. The following list of rela-
tional/equality operators is available in C for comparison of ints and floats

(as well as chars):

Operator Meaning True expression False expression
< less than 3 < 5 evaluates to 1 5 < 3 evaluates to 0

> greater than 5 > 3 evaluates to 1 3 < 5 evaluates to 0

<= less than or equal to 5 <= 5 evaluates to 1 5 <= 3 evaluates to 0

>= greater than 5 >= 3 evaluates to 1 3 >= 5 evaluates to 0

== equal to 5 == 2+3 evaluates to 1 5 == 2+2 evaluates to 0

! = not equal to 5 != 2+2 evaluates to 1 5 != 2+3 evaluates to 0

Comparisons can be used in the same way as arithmetic expressions are used,
as part of assignment statements. Note, true comparisons evaluate to 1, false
comparisons evaluate to 0.

Example. Consider the following C program:

#include <stdio.h>

1

int main() {

int x,y,b,c;

x = 10;

y = 5;

b = (x == y);

c = (x >= 2*y);

printf("%d\n%d\n%d\n",b,c,(b!=c));

return 0;

}

The output of the program is

0

1

1

Boolean (Logical) Operators

Often, one needs to obtain a truth value of a group of comparisons. This is done
using three boolean or logical operations: conjunction, disjunction and negation:

conjunction computes the truth value of all comparisons in the group evalu-
ating to true.

disjunction computes the truth value of at least one comparison in the group
evaluating to true.

negation ”flips” the truth value of a comparison.

Logical Operator C operator Arity
conjunction && binary
disjunction || binary
negation ! unary

The syntax of a logical operation expression is:

<Expression> <Logical Operator> <Expression>

where <Logical Operator> is either && or ||, or

! <Expression>

(conventions about the standard use of partentheses apply)

Examples. The following are correct C logical expressions:

(2 == 1+1) && (3 == 4-1)

1 || 0

!(2 == 100 -90)

(! (3 == 2) && (1 || 0))

Meaning of boolean operators. The formal semantics of the boolean op-
erators is described in the following tables:

Semantics of conjunction (&&)
<Expression1> <Expression2> <Expression1> && <Expression2>

true (nonzero) true (nonzero) true (1)
true (nonzero) false (0) false (0)
false (0) true (nonzero) false (0)
false (0) false (0) false (0)

2

Semantics of disjunction (||)
<Expression1> <Expression2> <Expression1> || <Expression2>

true (nonzero) true (nonzero) true (1)
true (nonzero) false (0) true (1)
false (0) true (nonzero) true (1)
false (0) false (0) false (0)

Semantics of negation (!)
<Expression> !<Expression>

true (nonzero) false (0)
false (0) true (1)

Operator precedence. The following is the operator precedence table for all
known to us C operators (arithmetic, assignment, comparison, logical):

Precedence Level Operators Arity
1. (highest) function calls varies

2. !, +, - unary
3. *, /, % binary
4. +,- binary
5. <, <=, >=, > binary
6. ==, != binary
7. && binary
8. || binary
9. (lowest) = binary

DeMorgan’s Theorem (Law). Behold the awesome power of logic!

!(<Expr1> && <Expr2>) is (!<Expr1> || !<Expr2>)

!(<Expr1> || <Expr2>) is (!<Expr1> && !<Expr2>)

If statement

Comparisons and logical operations allow us to construct expressions whose
values are interpreted as true and false (boolean expressions).

if statements (as well as switch statements to be discussed later) use boolean

expressions to determine which statements need to be executed next.

Up until now, in all programs we considered, all statements were executed
exactly in the order they appeared in the text of the program. Conditional C
statements (if statement and switch statement) diverge from this.

If statement with one alternative. The syntax of the most simple if state-
ment is

if (<expression>)

<statement-block>

Here, <expression> is any expression which evaluates to a truth value.
<statement-block> is either a single statement or a sequence of statements
enclosed in curly braces (”{”, ”}”).

Examples. A single-alternative if statement with a single statement inside it:

if (x <= 5)

y = x*x;

A simple single-alternative if statement with a statement block inside it:

3

if ((x >= 5) && (x <= 20)) {

y = x*x;

x = x+1;

printf("%d\n", y);

}

Note: A closing curly brace ”}” is an indicator of the end of a group of
statements. As such, there is no need to follow it with a semicolumn.

Semantics. Single-alternative if statement is evaluated as follows:

1. <expression> is evaluated.

2. If <expression> evaluates to true (i.e., to a non-zero integer), then the
statement(s) from the <statement-block> is/are executed. After the
last statement in <statement-block> is executed (unless it was a return

statement), the statement immediately following the if statement will be
executed.

3. If <expression> evaluated to false (i.e., 0), the statement immediately
following the if statement will be executed.

If statement with two alternatives. A more complex version of the if

statement has the following syntax:

if (<expression>)

<true-statement-block>

else

<false-statement-block>

Here, <expression> is any expression which evaluates to a truth value. <true-statement-block>
and <false-statement-block> are either single statements or sequences of
statements enclosed in curly braces (”{”, ”}”).

Examples. A two-alternative if statement with a single statements inside it:

if (x <= y)

printf("Max = %d\n",y);

else

printf("Max = %d\n",x);

A simple single-alternative if statement with a statement block inside it:

if ((x >= 5) && (x <= 20)) {

y = x*x;

x = x+1;

printf("%d\n", y);

}

else {

y = (x-1)*(x-1);

x = x-1;

printf("%d\n",x);

}

Semantics. Two-alternative if statement is evaluated as follows:

1. <expression> is evaluated.

2. If <expression> evaluates to true (i.e., to a non-zero integer), then the
statement(s) from the <true-statement-block> is/are executed. After
the last statement in <false-statement-block> is executed (unless it
was a return statement), the statement immediately following the if

statement will be executed.

4

3. If <expression> evaluated to false (i.e., 0), then he statement(s) from
the <false-statement-block> is/are executed. After the last statement
in <false-statement-block> is executed (unless it was a return state-
ment), the statement immediately following the if statement will be ex-
ecuted.

Example. In the first example above, if y is greater than or equal to x, the
if part of the statement will be executed, and the value of y will be printed to
standard output. If y is not greater than or equal to x (i.e., if x is greater than
y), the value of x will be printed to standard output.

Nested If statements

if statements can be parts of blocks of statement blocks inside other if state-
ments. For example, the if ((x >= 5) && (x <= 20)) condition can be
rewritten in a form nested if statements:

begin{verbatim}

if (x >= 5) {

if (x <= 20) {

y = x*x;

x = x+1;

printf("%d\n", y);

}

}

Note: please note the indentation of the if statements. It is extremely
important to keep proper track of the open and closed curly braces in your if
statements, especially, if you are using nested ifs.

5

