DATA 301 Introduction to Data Science Alexander Dekhtyar

Textual Data

What is Textual Data?

Textual Data refers tosytematically collected material consisting of writteminged, or electronically
published words, typically either purposefully writtentaanscribed from speedi2]

Document. A text documentis a single unit otextual data: one element of the systematically collected
material acessible in a holistic way (either as a single ditegs a single logical web page).

Document collection. A set oftext documentsthat wassystematically collected

Note: What constitutes a document may vary depending on the doduro#ection and its purpose. A
book represents a single document in the collection of b¢@ks, The Guttenberg Project). At the same
time, a single book may often be considered a document tioleitself, in which case the documents with
in it may be its chapters, or even, individual paragraphs.

Formats for text documents

Text documents are usually stored electronically in thiofghg data formats:

e Plain text files. The simplest of all text formats, usually labeled by thext file extenstions, these
files contain verbatim the text of the documeantd nothing else

¢ Rich Text Format. Rich text format file, usually carrying thert f extension is an extension of
plain text format with a number of special purpose annatatiand commands that a text processor
can parse and render. RTF files can add different fonts aret simple editorial features to the
text documents. RTF is a proprietary Microsoft format, littds been used widely as a document
interchange format.

e HTML. Most text documents available on-line are stored inside HTddntainers, just as about
anything else on the World Wide Web. HTML adds a variety okttt specify formatting of the
text, as well as may appigascaded Style Sheets and some other tools to properly render the text.
At the same time, the actual text content of the documengédtior HTML is usually readable.

One other important thing that HTML is able to add to text doeats ishyperlinking - one text in a
collection of documents can point directly to another text.

e SGML and XML. Standard General Markup Language and Extensible Markup Language
emerged in late 1990s as data formats for annotating textrdests. SGML/XML text documents
often look similar to HTML documents, but unlike HTML, whettee names of the annotation tags are

fixed, SGML and XML allow the author of the documents to usértben tags/elements to annotate
the text.

e E-book formats. Since late 1990<lectronic book®&ecame popular. Over the years a large number of
proprietarye-book formats was createdFb2 andMobipocket (one of Amazon’s Kindle formats),
KF8 (another Kindle format) are the most popular of them. An opérook format calledePub
also exists. Fb2 andePub are based on XML, whilélobipocket is not directly readableKF8 is
somewhat compatible with HTML5 — the latest standard for HTM

e Word processing files. Microsoft’s .doc and .docx data formats, despite being widely different
dominate this space. There are also open formats comingtfie®@pen Office community. .doc
format is not human readablalocx encodes documents in XML.

e Postscript and PDF files. While different, these two formats share common featureshey are
largely created so that complex documents are properlyereddn screen and in prirRostscript is
a programming language for processing and rendering text.

e Documents as parts of other objects. Textual data may often be embedded inside other objects as
one of the attribute among many. In this case, textual datacoee in any known format and will
require the appropriate tools for extraction.

In this course we will primarily deal with data formats thaé @asy to read and easy to process - plain
text, HTML, with some XML and JSON (sd@ocument as parts of other objectsabove).

Processing Text Document Collections

In data science, text collections can be used for a wide rahgerposes, and the text documents from those
collections can be analyzed in a diverse number of ways. dtateling what text documents will be used
for will guide the initial processing of text documents.

Note. Strictly speakingtext processing steps described below correspond to three steps in thedata s
ence process:

e Data acquisition. On this step the text collection is formed and the format fa driginal text
documents is selected.

¢ Data cleaning. On this step some preliminary processing of the text doctsrisiperformed. In case
of text document collections, this step is often calledprocessing and may consist of a variety of
activities (see below).

e Data modeling. In order to be conveniently analyzed, text data needs to hpdtked” from its
original format and representations of text documentsdl@aeasy to use in analysis need to be built.
This step is often calletext indexing, the data in the text documents is gettingexedfor easier
access.

1Seehttps://en.wikipedia.org/wiki/Comparison_of_e-book_formats for a detailed list of e-book formats.

Processing text documents. The following processing steps are usually considered.

1. Preprocessing. Preprocessing involves a number of, typically, model-pateent procedures that
turn input documents from text into representations thatlel-based indexercan use to construct
thedocument collection index Typical preprocessing steps include:

(a) Parsing and tokenizinginput. On this stage individual keywords/terms, sentengesases and
other constructs are identified. Also, parts of the input,ne@ded in the indexing process (e.g.,
HTML tags) are filtered out.

(b) Stopword removal. Some words are ubiquitous, and their value carriers of nmgéuli data is
negligible. These words are identified and removed from teuchent representations.

(c) Stemming. Each keyword is replaced with issem- a substring that represents tnechangable
portion of the keywordThis allows the IR system to treat words lit@mputer”, "computers”,

"computing”, "computation” as the same keyword.
2. Modeling and Indexing. The modeling part of this process producesepresentatiorfor each text
document that is needed for the analytical methods.

Theindexing part creates a searchaldecondary data structurihat allows analytical methods dis-
cover documents posessing specific featwrigisout having to access all document representations

Preprocessing

Preprocessinginvolves a number ofmodel-independentactivities: i.e., tasks that need to be performed in
order to represent documents frdthasbags of words

These tasks includearsing, stopword removal andstemming

Parsing

Parsingis the only preprocessing activity that is dependent onrtpatiformat.

Theparsing process reads one-by-one each docurdgiom the document collectiof. The following
tasks are typically performed:

e The input document ikenized That is, theparser detects word boundaries, punctuation and other
features of the document.

e The input document ifiltered if necessary. Some documents are in a fornddh. or XML files.
Other documents may contain formatting instructions,etabimages, and other features that either
requiredeep parsingor need to be/ can be ignored by the rest of the preprocessitigndexing
components.

2This is not always desirable. Google, for example does eat &eywords. However, in smaller document collections stéTg
can significantly improve the quality of retrieval.

Stopword Removal

Stopwords. A stopword is a word that is found in colloquial speech/literaturetsfie document collec-
tion so often, that it does not carry any specific meaning.

Various lists of stopwords exist. Typical stopwords prenouns ("I", "you”, "they”, "them”, "his"),
common verbs ("do”, "be”, "am”, "are”, "have” "had”), propositions and connectives: ("in”, "onto”,

"and”, "or”, "of", "from”).

Some document collection acquire stopwords that are spdoithem. E.g., a collection of Computer
Science articles may need to declare "computer” to be a stapw

Stopword removal. For many analytical tasks stopwords are not needed. At tme seme, documents
may contain a significant percentage of stopwords, which stay down the analysis. In such cases it may
be important to get rid of stopwords. The traditional medsraris as follows:

e Select a list of stopwords appropriate for the documenectidn and the analytical tasks considered
for the document collection.

e For each token of typeord read from the document, check if the word belongs to the fikhown
stopwords.

e If it belongs to the list of stopwords, remove it from the atrge consider next word.

e If is does not belongo the list of stopwords, pass the token onto the next stepazigssing.

Stemming

Stemmingis the process of replacing a word with gem or root3.

Stemming proceduresare unique for each language. In EngliBlorter Algorithm [1] is considered to
be the traditionabtemming technique The specifics of the algorithm can be found in [1], as welltas a

http://tartarus.orgtmartin/PorterStemmer/
The algorithm itself is described at
http://tartarus.orgimartin/PorterStemmer/def.txt
The algorithm is organized as a series of rule applicati@isen a word, on each step of the series the

algorithm checks whether a rule is applicable. A rule idesgithe ending of the current word, and replaces
it (occasionally, simply removes it) with a shorter ending.

Feature Extraction from Text Documents

Themodeling process for text document collections represents textrdeats as data structures based on
document features. The following types of features can be found in text docutsien

3Technically, a stem of a word is more than just a root. Stergralgorithms keep prefixes intact.

Words and keywords. The most basic unit of information extractable from a tex 8ngle word. Often,
only some of the words in the document are important enougleep in the document model. Such words
are calleckeywords (while all other words are callestopwords).

Somekeywords are longer than a single word. For exampléal Pol y" is a keyword consisting of
two words.

Sentences. Often, the units of analysis of text documents are individagantences. Sentences may be
extracted in raw format, as well as in a parsed form, togethtr the annotated parse treshowing the
grammatical structure of the sentence.

Bigrams, trigrams, multigrams. A bigram is defined as succession of two simple features. In text
analysis, the simple features may be either individuatitetor individual words in the document.

For example, awortisci ence" consists of the followindetter bigrams
sc, ci, ie, en, nc, ce

Asentencé A bigramis defined as a succession of two sinple features” con-
sists of the followingvord bigrams

a bigram bigramis, is defined, defined as, as a, a succession
succession of, of two, two sinple, sinple features

If stopwords are removes, the same sentence may be rem@senthe following sequence of tokens:
"bi gram defi ned successi on two sinple features", in which case, the list of bigrams
for the sentence will be

bi gram defi ned, defined succession, succession two, two sinple,
sinpl e features

Trigrams are defined as successions of three simple features, and 3tefist of letter trigrams in the
word" sci ence" is

The list of word trigrams in our sample sentence above is

a bigramis, bigramis defined, is defined as, defined as a
as a succession, a succession of, succession of two, of two sinple,
two sinple features

Entities and notions. Words, bigrams, etc argyntacticunits of information contained in the text docu-
ments, i.e., they simply represent parts structural pattseodocumentEntities andnotionsare usually the
units ofsemanticainformation contained in a text document.

For example, consider the sentence

M tchell and Stephanie had a great tinme in San Francisco in June.

A reader can recognize the following information in thistemice:

e People. The words"M tchel | " and" St ephani e" refer to two different people mentioned in
the sentence.

e Geography. The pair of words' San Fr anci sco" refers to a city (most likely) in California.

e Calendar. The word" June" refers to a calendar month in this particular setting

Thus, it is possible to extract four features:

Person("Mtchell")

Per son(" St ephani e")

City("San Francisco") [or Ceographi cName("San Franci sco")]
Mont h(" June")

from this sentence. Unlike simply noticing that wofdd t chel | ", " St ephani e", "San", "Franci sco”
and" June" should be stored in a representation of this sentence,nligieg the types of entities or no-

tions they correspond to allows us to stockpile for future itiformation about the actuateaningof the
sentence.

Relationships and associations. The final (for now) and the most complex type of informatioatthan
be extracted from text iassociations (otherwise often calledelationships) between various entities and
notions observed in text.

For example, from analyzing the sentence above, one caruckenthat Mitchell visited San Francisco.
One can also conclude that Stephanie visited San Franclscmmber of associations between Mitchell
and Stephanie are also possible: e.g., we may conclude itctell and Stephanie may be friends.

Modeling Document Collections

Most document collection models share the following feagur

Document collection. The input data for each model is a document collecfibe- {d, . .. d,} of docu-
ments.

Vocabulary (corpus). The collection ofnon-stop word words (a.k.a.terms) found in the documents
from D is called thevocabulary or corpus of D. Given D, we denote the vocabulary @f as

Vp ={t1,...ta}

(whereD is unique, we denote the vocabularyigfas simplyV'.) Eacht; is adistinct term (keyword)
found in at least one document in.

“Notice that' June" is also a possible name.

Vector of features representation. Each documend;inD is represented as a vectdy = (f1,..., fn)
of features selected by the model. Eaghin d; represents thealueof feature: of the model.

Bag of Word Models

Bag of words representation. Each documentl; € D is represented as laag of words i.e., as an
unordered collection of terms found in each documehag means that the number of occurrences of each
term may be taken into account).

The standard representationlbg of wordsis avector of keyword weights a vector which assigns each
termt; € V aweight based on its occurrence/non-occurrence;in

As such, we viewl; as the vector
dj = (wlj,ng,ng, e ,’U)Mj).
Herew;j is the weight of ternt; in documentd;.
Different modelsrepresenterm weights in different ways.
Boolean Model

Boolean Information Rertieval modelis the simplest document representation model. It has tlenviog
features:

Term weights. Given a documentl; € D, it is represented as the vector lmhary keyword weights
dj = (wlj, W5, W3jy - - - ,w]y[j), Wherewij S {0, 1} and

) 1 : t;appears inl;;
Y9 =Y 0 : otherwise

Vector Space Model

Overview. Vector Space Modelrepresents keyword weights on the scale from 0 to 1 and remi®s
gueries in a way, similar to documents. It usasine similarity to compute the relevance between a
document and a query and uses the relevance value to rangstiiesr

Term frequency. Given a document; € D and a term; € V, theterm frequency (TF) f;; of t; in d;
is the number of times; occurs ind;. For a document;, we can construct its vector of term frequencies

fdj = (fljvf?jv"' 7fMj)

Normalized term frequency. Term frequencies are commonly manipulated to provide fogteebrepre-
sentation of the document. Two manipulation techniqued asethresholding andnormalization.

Given athreshold value o, we setterm frequency {j to be

g a : fij>a

?

7 _{ fii + fij <o

(i.e., we discount any further occurrences of the terms gud@ent beyond a certathreshold o number of
occurrences).

Given a vectorf,, of (possibly thresholded) term frequencies, we computenalized term frequencies
tfi; as follows:

fij

max(fij, foj,- -, farg)

tfij =

Document frequency (DF). Given aterm; € V, its document frequency df; is defined as thaumber
of documents in whicht; occurs
dfl = |{dj S D‘fw > 0}‘

Inverse document frequency (IDF). Given a term¢; € V, its inverse document frequency (IDF)is

computed as
n

idf; = log i

TF-IDF keyword weighting schema. Given a documend; and a ternt;,

fij

max(fij, ..., farj)

. n
wij = tfij - idfy = -logy i

Intuition. The idea behind th#-idf weighting schemais straightforward. The importance of a keyword

to a document is measured using two rules:

1. The more often the keyword appears in a document, the mgrertant it is.

2. The less frequently the keyword appears in the documdlettion, the more important its occurence
is in each document.

Term frequency (or normalized term frequency) captures the first rdlezerse document frequency
captures the second rule.

Query weighting schemas. Given a queryg = (wiq,...,wayq), the query term weights can be deter-
mined using the exadiF-IDF weighting schema

Wiqg =t fiq - 1df;.

However, ifq is short (contains relatively few terms in comparison witltaiments fromD), some slight
adjustments can be adopted:

Other simple weighting schemas. Some other simple term weighting schemas:
Normalized Term Frequency (TR);; = tfi;.
Inverse Document Frequency (IDR);; = idf;.

(note, wheni; has no repeated keywords, TF-IDF weighting schema conseoggmple IDF weighting.
This is common in document collections that consist of smatluments: e.g., lists of quotations.)

References

[1] M.F. Porter, 1980, An algorithm for suffix stripping, Rp@am, 14(3) pp 130-137.

[2] Kenneth Benoit, Data, Textual. Imternational Encyclopedia of Political Sciendgertrand Badie, Dirk Berg-
Schlosser, Lenoardo Morlino (Eds.), DOktp://dx.doi.org/10.4135/9781412959636.n127

