
. .
DATA 301 Introduction to Data Science Alexander Dekhtyar
. .

Textual Data

What is Textual Data?

Textual Data refers tosytematically collected material consisting of written, printed, or electronically
published words, typically either purposefully written ortranscribed from speech.[2]

Document. A text document is a single unit oftextual data: one element of the systematically collected
material acessible in a holistic way (either as a single file,or as a single logical web page).

Document collection. A set oftext documentsthat wassystematically collected.

Note: What constitutes a document may vary depending on the document collection and its purpose. A
book represents a single document in the collection of books(e.g.,The Guttenberg Project). At the same
time, a single book may often be considered a document collection itself, in which case the documents with
in it may be its chapters, or even, individual paragraphs.

Formats for text documents

Text documents are usually stored electronically in the following data formats:

• Plain text files. The simplest of all text formats, usually labeled by the.txt file extenstions, these
files contain verbatim the text of the documentand nothing else.

• Rich Text Format. Rich text format file, usually carrying the.rtf extension is an extension of
plain text format with a number of special purpose annotations and commands that a text processor
can parse and render. RTF files can add different fonts and other simple editorial features to the
text documents. RTF is a proprietary Microsoft format, but it has been used widely as a document
interchange format.

• HTML. Most text documents available on-line are stored inside HTML containers, just as about
anything else on the World Wide Web. HTML adds a variety of tags that specify formatting of the
text, as well as may applyCascaded Style Sheets and some other tools to properly render the text.
At the same time, the actual text content of the document stored in HTML is usually readable.

One other important thing that HTML is able to add to text documents ishyperlinking - one text in a
collection of documents can point directly to another text.

• SGML and XML. Standard General Markup Language and Extensible Markup Language
emerged in late 1990s as data formats for annotating text documents. SGML/XML text documents
often look similar to HTML documents, but unlike HTML, wherethe names of the annotation tags are

1

fixed, SGML and XML allow the author of the documents to use their own tags/elements to annotate
the text.

• E-book formats. Since late 1990s,electronic booksbecame popular. Over the years a large number of
proprietarye-book formats was created:Fb2 andMobipocket (one of Amazon’s Kindle formats),
KF8 (another Kindle format) are the most popular of them. An opene-book format calledePub
also exists1. Fb2 andePub are based on XML, whileMobipocket is not directly readable,KF8 is
somewhat compatible with HTML5 – the latest standard for HTML.

• Word processing files. Microsoft’s .doc and .docx data formats, despite being widely different
dominate this space. There are also open formats coming fromthe Open Office community. .doc
format is not human readable..docx encodes documents in XML.

• Postscript and PDF files. While different, these two formats share common features, as they are
largely created so that complex documents are properly rendered on screen and in print.Postscript is
a programming language for processing and rendering text.

• Documents as parts of other objects. Textual data may often be embedded inside other objects as
one of the attribute among many. In this case, textual data can come in any known format and will
require the appropriate tools for extraction.

In this course we will primarily deal with data formats that are easy to read and easy to process - plain
text, HTML, with some XML and JSON (seeDocument as parts of other objectsabove).

Processing Text Document Collections

In data science, text collections can be used for a wide rangeof purposes, and the text documents from those
collections can be analyzed in a diverse number of ways. Understanding what text documents will be used
for will guide the initial processing of text documents.

Note. Strictly speaking,text processing steps described below correspond to three steps in the data sci-
ence process:

• Data acquisition. On this step the text collection is formed and the format for the original text
documents is selected.

• Data cleaning. On this step some preliminary processing of the text documents is performed. In case
of text document collections, this step is often calledpreprocessing and may consist of a variety of
activities (see below).

• Data modeling. In order to be conveniently analyzed, text data needs to be ”unpacked” from its
original format and representations of text documents thatare easy to use in analysis need to be built.
This step is often calledtext indexing, the data in the text documents is gettingindexedfor easier
access.

1Seehttps://en.wikipedia.org/wiki/Comparison of e-book formats for a detailed list of e-book formats.

2

Processing text documents. The following processing steps are usually considered.

1. Preprocessing. Preprocessing involves a number of, typically, model-independent procedures that
turn input documents from text into representations thatmodel-based indexercan use to construct
thedocument collection index. Typical preprocessing steps include:

(a) Parsing and tokenizinginput. On this stage individual keywords/terms, sentences, phrases and
other constructs are identified. Also, parts of the input, not needed in the indexing process (e.g.,
HTML tags) are filtered out.

(b) Stopword removal. Some words are ubiquitous, and their value carriers of meaningful data is
negligible. These words are identified and removed from the document representations.

(c) Stemming.Each keyword is replaced with itsstem- a substring that represents theunchangable
portion of the keyword. This allows the IR system to treat words like”computer”, ”computers”,
”computing”, ”computation” as the same keyword.2

2. Modeling and Indexing. Themodeling part of this process produces arepresentationfor each text
document that is needed for the analytical methods.

The indexing part creates a searchablesecondary data structurethat allows analytical methods dis-
cover documents posessing specific featureswithout having to access all document representations.

Preprocessing

Preprocessinginvolves a number ofmodel-independentactivities: i.e., tasks that need to be performed in
order to represent documents fromD asbags of words.

These tasks includeparsing, stopword removal andstemming.

Parsing

Parsing is the only preprocessing activity that is dependent on the input format.

Theparsing process reads one-by-one each documentdj from the document collectionD. The following
tasks are typically performed:

• The input document istokenized. That is, theparser detects word boundaries, punctuation and other
features of the document.

• The input document isfiltered if necessary. Some documents are in a form ofHTML or XML files.
Other documents may contain formatting instructions, tables, images, and other features that either
requiredeep parsingor need to be/ can be ignored by the rest of the preprocessing and indexing
components.

2This is not always desirable. Google, for example does not stem keywords. However, in smaller document collections stemming
can significantly improve the quality of retrieval.

3

Stopword Removal

Stopwords. A stopword is a word that is found in colloquial speech/literature/specific document collec-
tion so often, that it does not carry any specific meaning.

Various lists of stopwords exist. Typical stopwords arepronouns (”I”, ”you”, ”they”, ”them”, ”his”),
common verbs (”do”, ”be”, ”am”, ”are”, ”have” ”had”), propositions and connectives: (”in”, ”onto”,
”and”, ”or”, ”of”, ”from”).

Some document collection acquire stopwords that are specific to them. E.g., a collection of Computer
Science articles may need to declare ”computer” to be a stopword.

Stopword removal. For many analytical tasks stopwords are not needed. At the same time, documents
may contain a significant percentage of stopwords, which mayslow down the analysis. In such cases it may
be important to get rid of stopwords. The traditional mechanism is as follows:

• Select a list of stopwords appropriate for the document collection and the analytical tasks considered
for the document collection.

• For each token of typeword read from the document, check if the word belongs to the list of known
stopwords.

• If it belongs to the list of stopwords, remove it from the stream, consider next word.

• If is does not belongto the list of stopwords, pass the token onto the next step of processing.

Stemming

Stemming is the process of replacing a word with itsstemor root3.

Stemming proceduresare unique for each language. In English,Porter Algorithm [1] is considered to
be the traditionalstemming technique. The specifics of the algorithm can be found in [1], as well as at

http://tartarus.org/∼martin/PorterStemmer/

The algorithm itself is described at

http://tartarus.org/∼martin/PorterStemmer/def.txt

The algorithm is organized as a series of rule applications.Given a word, on each step of the series the
algorithm checks whether a rule is applicable. A rule identifies the ending of the current word, and replaces
it (occasionally, simply removes it) with a shorter ending.

Feature Extraction from Text Documents

Themodeling process for text document collections represents text documents as data structures based on
document features. The following types of features can be found in text documents.

3Technically, a stem of a word is more than just a root. Stemming algorithms keep prefixes intact.

4

Words and keywords. The most basic unit of information extractable from a text isa single word. Often,
only some of the words in the document are important enough tokeep in the document model. Such words
are calledkeywords (while all other words are calledstopwords).

Somekeywords are longer than a single word. For example"Cal Poly" is a keyword consisting of
two words.

Sentences. Often, the units of analysis of text documents are individual sentences. Sentences may be
extracted in raw format, as well as in a parsed form, togetherwith the annotated parse treeshowing the
grammatical structure of the sentence.

Bigrams, trigrams, multigrams. A bigram is defined asa succession of two simple features. In text
analysis, the simple features may be either individual letters or individual words in the document.

For example, a word"science" consists of the followingletter bigrams:

sc, ci, ie, en, nc, ce

A sentence"A bigram is defined as a succession of two simple features"con-
sists of the followingword bigrams:

a bigram, bigram is, is defined, defined as, as a, a succession
succession of, of two, two simple, simple features

If stopwords are removes, the same sentence may be represented as the following sequence of tokens:
"bigram defined succession two simple features", in which case, the list of bigrams
for the sentence will be

bigram defined, defined succession, succession two, two simple,
simple features

Trigrams are defined as successions of three simple features, and so on. The list of letter trigrams in the
word"science" is

sci, cie, ien, enc, nce

The list of word trigrams in our sample sentence above is

a bigram is, bigram is defined, is defined as, defined as a
as a succession, a succession of, succession of two, of two simple,
two simple features

Entities and notions. Words, bigrams, etc aresyntacticunits of information contained in the text docu-
ments, i.e., they simply represent parts structural parts of the document.Entities andnotionsare usually the
units ofsemanticalinformation contained in a text document.

For example, consider the sentence

5

Mitchell and Stephanie had a great time in San Francisco in June.

A reader can recognize the following information in this sentence:

• People. The words"Mitchell" and"Stephanie" refer to two different people mentioned in
the sentence.

• Geography. The pair of words"San Francisco" refers to a city (most likely) in California.

• Calendar. The word"June" refers to a calendar month in this particular setting4

Thus, it is possible to extract four features:

Person("Mitchell")
Person("Stephanie")
City("San Francisco") [or GeographicName("San Francisco")]
Month("June")

from this sentence. Unlike simply noticing that words"Mitchell", "Stephanie", "San", "Francisco"
and"June" should be stored in a representation of this sentence, determining the types of entities or no-
tions they correspond to allows us to stockpile for future the information about the actualmeaningof the
sentence.

Relationships and associations. The final (for now) and the most complex type of information that can
be extracted from text isassociations (otherwise often calledrelationships) between various entities and
notions observed in text.

For example, from analyzing the sentence above, one can conclude that Mitchell visited San Francisco.
One can also conclude that Stephanie visited San Francisco.A number of associations between Mitchell
and Stephanie are also possible: e.g., we may conclude that Mitchell and Stephanie may be friends.

Modeling Document Collections

Most document collection models share the following features.

Document collection. The input data for each model is a document collectionD = {d1, . . . dn} of docu-
ments.

Vocabulary (corpus). The collection ofnon-stop word words (a.k.a. terms) found in the documents
from D is called thevocabulary or corpusof D. GivenD, we denote the vocabulary ofD as

VD = {t1, . . . tM}.

(whereD is unique, we denote the vocabulary ofD as simplyV .) Eachti is adistinct term (keyword)
found in at least one document inD.

4Notice that"June" is also a possible name.

6

Vector of features representation. Each documentdjinD is represented as a vectordj = (f1, . . . , fn)
of features selected by the model. Eachfi in dj represents thevalueof featurei of the model.

Bag of Word Models

Bag of words representation. Each documentdj ∈ D is represented as abag of words, i.e., as an
unordered collection of terms found in each document (bag means that the number of occurrences of each
term may be taken into account).

The standard representation ofbag of words is avector of keyword weights: a vector which assigns each
termti ∈ V a weight based on its occurrence/non-occurrence indj .

As such, we viewdj as the vector

dj = (w1j , w2j , w3j , . . . , wMj).

Herewij is the weight of termti in documentdj.

Different modelsrepresentterm weights in different ways.

Boolean Model

Boolean Information Rertieval model is the simplest document representation model. It has the following
features:

Term weights. Given a documentdj ∈ D, it is represented as the vector ofbinary keyword weights
dj = (w1j , w2j , w3j , . . . , wMj), wherewij ∈ {0, 1} and

wij =

{

1 : ti appears indj ;
0 : otherwise.

Vector Space Model

Overview. Vector Space Modelrepresents keyword weights on the scale from 0 to 1 and represents
queries in a way, similar to documents. It usescosine similarity to compute the relevance between a
document and a query and uses the relevance value to rank the results.

Term frequency. Given a documentdj ∈ D and a termti ∈ V , the term frequency (TF) fij of ti in dj

is the number of timesti occurs indj . For a documentdj , we can construct its vector of term frequencies

fdj
= (f1j , f2j, . . . , fMj).

Normalized term frequency. Term frequencies are commonly manipulated to provide for a better repre-
sentation of the document. Two manipulation techniques used arethresholding andnormalization.

Given athreshold valueα, we setterm frequency f ′

ij to be

7

f ′

ij =

{

fij : fij < α;
α : fij ≥ α

(i.e., we discount any further occurrences of the terms in document beyond a certainthreshold α number of
occurrences).

Given a vectorfdj
of (possibly thresholded) term frequencies, we computenormalized term frequencies

tfij as follows:

tfij =
fij

max(f1j, f2j , . . . , fMj)
.

Document frequency (DF). Given a termti ∈ V , its document frequency, dfi is defined as thenumber
of documents in whichti occurs:

dfi = |{dj ∈ D|fij > 0}|.

Inverse document frequency (IDF). Given a termti ∈ V , its inverse document frequency (IDF)is
computed as

idfi = log
n

dfi

.

TF-IDF keyword weighting schema. Given a documentdj and a termti,

wij = tfij · idfi =
fij

max(f1j , . . . , fMj)
· log2

n

dfi

.

Intuition. The idea behind thetf-idf weighting schema is straightforward. The importance of a keyword
to a document is measured using two rules:

1. The more often the keyword appears in a document, the more important it is.

2. The less frequently the keyword appears in the document collection, the more important its occurence
is in each document.

Term frequency (or normalized term frequency) captures the first rule.Inverse document frequency
captures the second rule.

Query weighting schemas. Given a queryq = (w1q, . . . , wMq), the query term weights can be deter-
mined using the exactTF-IDF weighting schema:

wiq = tfiq · idfi.

However, ifq is short (contains relatively few terms in comparison with documents fromD), some slight
adjustments can be adopted:

wiq = (0.5 + 0.5 · tfiq) · idfi.

8

Other simple weighting schemas. Some other simple term weighting schemas:

Normalized Term Frequency (TF):wij = tfij.

Inverse Document Frequency (IDF):wij = idfi.

(note, whendj has no repeated keywords, TF-IDF weighting schema converges to simple IDF weighting.
This is common in document collections that consist of smalldocuments: e.g., lists of quotations.)

References

[1] M.F. Porter, 1980, An algorithm for suffix stripping, Program, 14(3) pp 130–137.

[2] Kenneth Benoit, Data, Textual. InInternational Encyclopedia of Political Science, Bertrand Badie, Dirk Berg-
Schlosser, Lenoardo Morlino (Eds.), DOI:http://dx.doi.org/10.4135/9781412959636.n127

9

