Divide-and-conquer Algorithms

Binary Search

Divide-and-Conquer Algorithms

Divide-and-Conquer: is an algorithmic technique that solves a computational problem by:

1. Breaking it into subproblems that are smaller instances of the same type of problem
2. Recursively solving these subproblems
3. Constructing the solution to the problem from the solutions of the subproblems.

Binary Search

Search Problem. Given an array \(A[1..N] \) of integers sorted in ascending order, and an integer \(x \), return true if \(x \) is found in \(A \), and false otherwise.

Naïve Solution. The straightforward or naïve solution is to start with the first element of \(A \) and compare all elements of the array to \(x \) until we either find \(x \) or we find an element that is larger than \(x \).

The pseudocode is below.
Algorithm NaiveSearch(N,A[1..N], x)
begin
 for i ← 1 to N do
 if x = A[i] then return(true);
 if x < A[i] then return(false);
 end for
 return(false);
end

Worst-Case Complexity of NaiveSearch. Let x ∉ A and let A[N] < x. Then Algorithm NaiveSearch (as written above) will take 2N comparisons.

Proof. Straightforward. The first comparison in the loop will always be false because no element of A is equal to x. The second comparison will always be false because all elements of A are smaller than x (by our assumption). Therefore, none of the return statements inside the loop will be executed, and thus, the loop will execute N times. This implies that there execution will involve 2N comparisons.

Divide-and-Conquer solution. A better solution is to do the following:

- Compare the middle point of the array A[⌈N/2⌉] to x.
- If A[⌈N/2⌉] = x, stop and return true.
- If A[⌈N/2⌉] > x, then x can only be found in the first half of A. Search for x recursively in A[1..⌈N/2⌉ − 1].
- If A[⌈N/2⌉] < x, then x can only be found in the second half of A. Search for x recursively in A[⌈N/2⌉ + 1, N].

An algorithm that solves the Search problem using this approach is called Binary Search.

The exact pseudocode is in Figure 1. To solve the problem, BinarySearch algorithm is called as

BinarySearch(1,N,N,A[1..N],x)

The first two input parameters are the range of indexes in array A over which the search is to be conducted in the current call.

Algorithm Correctness. We prove that the algorithm is correct by induction.

Base Case. N = 1. In this case, the only acceptable call is BinarySearch(1,1,1,A[1..1],x). The first comparison of the algorithm (I = J) will be evaluated to true (I = 1, J = 1). If A[1] is indeed x, the A[I] = x comparison will evaluate to true and correct answer will be returned. If A[1] id not x, then A[I] = x will evaluate to false and the correct answer will be returned as well.
Algorithm BinarySearch(I,J, N,A[1..N], x)
begin
if I = J // Base Case
 if A[I] = x then
 return(true)
 else
 return(false)
else // inductive case
 c ← ⌈I + J⌉ ;
 if x = A[c] then
 return(true);
 else
 if x < A[c] then
 return BinarySearch(I, c-1, N, A, x);
 else // x > A[c]
 return BinarySearch(c+1, J, N, A, x);
 end if
 end if
end
end

Figure 1: Algorithm BinarySearch

Induction Step. Assume N > 1 and assume that for all I, J such that
J - I < N BinarySearch(I,J, A[1..N],x) returns the correct result. Consider
the algorithm call BinarySearch(1,N,A[1..N],x).

Because N > 1, the first comparison, I = J will evaluate to false. The
next statement will discover the midpoint between 1 and N and assign its
value to c. If A[c] contains x, then the followup comparison will evaluate
to true and the algorithm will return the correct answer. Otherwise, if x
is smaller than A[c], then x may not be found an any element of the array
A with an index greater than c, because A is sorted in ascending order.
Therefore, by inductive hypothesis, the call to BinarySearch(1,c-1, A[1..N],x)
will return the correct answer.

Similarly, if x > A[c], then, x will not be found in elements of A indexed
1 through c − 1, and therefor the correct answer will be discovered by the
BinarySearch(c+1,1,A[1..N],c) call.

Computational Complexity. Let us represent the running time of the
BinarySearch algorithm in terms of the number of comparison operations
that it takes to complete the computation. Let T(n) be the running time of
the algorithm on the input array of size n. Then, we can write the following
relationships:

\[T(1) = 2 \]

\[T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil \right) + 3 \]
We can apply the master theorem here:

\[f(n) = 3 = \Theta(1) \]
\[a = 1 \]
\[b = 2 \]

We have

\[f(n) = \Theta(n^{\log_b(a)}) = \Theta(n^{\log_2(1)}) = \Theta(n^0) = \Theta(1). \]

Therefore,

\[T(n) = \Theta(n^{\log_b(a) \log_2(n)}) = \log_2(n) \]