
. .
Spring 2010 CSC/CPE 349: Algorithms Alexander Dekhtyar
. .

Lab 4: Dynamic Programming: Part 1.

Due date: Thursday, April 29, at the beginning of lab period.

Lab Assignment

Assignment Preparation

This is an individual lab. The goal of this lab to give you an opportu-
nity to solve a few simple problems using dynamic programming techniques
and to compare the running time and the quality of answers for dynamic
programming and greedy algorithms.

The Task

You will implement dynamic programming solutions for the following prob-
lems:

• Making Change. For this problem, you will conduct a study that com-
pares the dynamic programming technique to the greedy algorithm.

• Rod Cutting. You will implement the dynamic programming algorithm
for solving this problem using three approaches:

1. iterative bottom-up approach;

2. recursive top-down approach without memoization.

3. recursive top-down approach with memoization.

Note: Memoization and other techniques will be discussed during the
Thursday, April 22 class.

1

Task 1: Making Change

You will implement a dynamic programming solution for the Making Change
problem and will conduct a comparative study using this implementation
and using your greedy algorithm from Lab 2.

Making Change Problem

The formulation of the problem is copied verbatim from your Lab 2 hand-
out.

Problem. A cashier at a store accepts money in payment for goods and
needs to make change. The money comes in a finite number of fixed coin and
bank note denominations. Assuming that the cashier has access to unlimited
quantities of bank notes and coins of every denomination, the cashier needs
to give change using the smallest number of coins/bank notes given a specific
amount of money.

Dynamic Programming for Making Change Problem

Your first task is to implement and validate a dynamic programming method
for making change. You will use the framework constructed in Lab 2. There,
you were required to implement a Java class MoneyChanger according to the
following specifications (repeated verbatim from the Lab 2 handout).

• int NCoins; instances of the MoneyChanger class will have an NCoins

field, which will store information about the number of different de-
nominations of coins/bank notes used to make change.

• int[] Money; instances of the MoneyChanger class will have a Money

field. This field shall contain the list of all available coin denominations
for making change. sorted in descending order. For example, for U.S.
currency, the array will contain the following values:

{ 10000, 5000, 2000, 1000, 500, 100, 25, 10, 5 ,1}1

• MoneyChanger(int N): a constructor creating an empty MoneyChanger

instance with N different currency denominations.

• void setCurrencyArray(int[] Coins): sets the Money component
of the MoneyChanger class to the Coins array passed into this method.

• int[] makeChange(int amount) is your implementation of the greedy

algorithm for making change. It returns an array which stores, for each
denomination from the Money[] array, the number of coins/notes of
this denomination in the change returned.

1Assuming no $2 bills and no half-dollar coins, as their circulation is very limited. Also,

assuming no $500 and $1000 or larger bills, as they are not in active circulation.

2

In addition to the MoneyChanger class, you should implement (outside
of this class) a printChange() method (figure out the return type and the
input parameters that fit your implementation best), which, given an array
of change (e.g., returned by the MoneyChanger.makeChange() method) and
an instance of the MoneyChanger class as input, will print the information
about the change.

New Requirements. Modify your Lab 2 solution as specified below:

(DP1.) Rename the makeChange() method to makeChangeGreedy().

(DP2.) Make sure your makeChangeGreedy() method properly implements
the greedy algorithm for making change (fix all previously known bugs,
if any, and address any comments from the grader, once you get them).

(DP3.) Implement a new method, int[] makeChangeDP(), which will com-
pute the change using the dynamic programming technique.

Please note, that for this assignment, you are allowed to choose your
own implementation of the makeChangeDP() method. While the bottom-up
iterative implementation will probably be the fastest, you are allowed to
use any implementation, as long as you acknowledge the type of the imple-
mentation you chose in your report and provide appropriate analysis of the
efficiency/running time of your implementation.

Comparative Study

Using your implementation of the dynamic programming and greedy algo-
rithms for Making Change problem, you will conduct a comparative study
that will study the following questions:

(Q1) Is it true that for some instances of the Making Change problem, a
greedy algorithm is optimal?

(Q2) Is it true that for some instances of the Making Change problem, a
greedy algorithm is NOT optimal?

(Q3) How likely is a greedy algorithm to provide an optimal solution for an
instance of the Making Change problem?

(Q4) What is the difference between the optimal solutions (computed by
the dynamic programming algorithm) and the greedy solutions to the
Making Change instances?

(Q5) What is the difference between the running time behavior of the dy-
namic programming algorithm (as implemented by you) and the greedy
algorithm?

The details for each question of the study are provided below.

3

Detecting Optimality of the greedy algorithm. We know (suspect?)
that on some sets of coin denominations, a greedy algorithm can provide
an optimal solution to the Making Change problem. Please note, that a
problem instance can have multiple different optimal solutions, and
that two different algorithms providing optimal solutions need not report
the same one. On the other hand all optimal solutions to the Making
Change problem will have the same size, i.e., the number of coins

reported.

To find whether the greedy algorithm computed an optimal solution you
will execute both the greedy and the dynamic programming algorithm on
the same instance and then, you will compare the number of coins reported by
both methods. If the number of coins is the same, your greedy algorithm has
reported an optimal solution (even if the solution it reported is different
from solution reported by your dynamic programming algorithm).

Using this trick, study the questions above as follows.

Questions Q1 and Q2. For these questions, use the following collections
of coins:

US denominations: 1, 5, 10, 25, 50, 100.

Soviet denominations: 1, 2, 3, 5, 10, 15, 20, 50, 100.

CS denominations: 1, 2, 4, 8, 16, 32, 64.

US without the nickel: 1, 10, 25, 50, 100.

The crazy set: 1, 10, 18, 27, 35, 66.

Note: It is expected that the first three collections of coins allow the
greedy algorithm to return optimal solutions, while the last two - do not.

For each coin collection, conduct the following study (write the appropri-
ate Java program that uses the MoneyChanger class instances):

1. For each change amount from 1 to 128, compute the change as given
by the greedy and by the dynamic programming algorithms.

2. Check if the greedy algorithm reported an optimal solution.

3. At the end of the run, determine if the greedy algorithm always re-
turned an optimal solution for the given collection of coin denomina-
tions.

4. Plot the sizes of the solutions returned by both algorithms. The
amount of change is the independent variable, whereas the number
of coins in the change is the dependent variable. (Graphs for coin
collections on which the greedy algorithm is optimal will contain only
one set of points. Graphs of coin collections on which the greedy
algorithm is NOT optimal shall contain solution sizes for both the
dynamic programming and the greedy algorithm).

4

5. Record your observations. Notice, that empirical evidence, such as
you are collecting is NOT, by itself a proof that one some inputs the
greedy algorithm is optimal. It is merely evidence in support of this
hypothesis. Please make certain you make proper and defensible state-
ments to this respect in your write-up.

Question Q3. How likely is a greedy algorithm to provide an optimal solution
for an instance of the Making Change problem?

You will adapt your original test framework from Lab 2 to study this
question. In particular, your code will work as follows:

1. generate 200 random coin sets (sets of denominations), just like you
did in Lab 2. Make sure that each coin set contains a coin with
denomination 1 (to ensure that any amount of change can be given).

2. For each randomly generated coin set, run both the greedy and the
dynamic programming method to determine solutions to the Make
Change problem for all amounts of change from 1 to double the
maximum coin value.

For, example, if your coin collection contains coin denominations 1, 13, 45, 67, 109, 231,
then, you will find change for each amount from 1 to 2 · 231 = 462.

3. Using the technique discussed above, determine if there is evidence
supporting the statement that the greedy algorithm provides an opti-
mal solution for the currect set of coin denominations.

4. Report the percentage of coin sets you generated, on which you have
empirical evidence that the greedy algorithm returns an optimal solu-
tion. Analyse your findings.

Note: If 200 runs is too small a number to properly evaluate the answer
to this question (e.g., because one of the two cases is very rare), increase the
number of trials by one-to-two orders of magnitude (i.e., to 2000 or 20000
randomly generated coin sets), and run the increased battery of tests as
described above.

Question Q4. What is the difference between the optimal solutions (com-
puted by the dynamic programming algorithm) and the greedy solutions to the
Making Change instances?

You can collect the data that would allow you to answer this question
while performing the study that addresses question Q3 (see above). The
information to be collected is described below:

• Average Difference. For each coin set, on which the greedy algorithm
is not optimal, collect the difference between the greedy solution and
the optimal solution (in terms of number of coins) for each change
amount, and find the mean of the difference.

5

• Average Ratio. For each coin set, on which the greedy algorithm is not
optimal, collect the ratio between the number of coins in the greedy
solution and the optimal solution. (note: make the number of coins in
the greedy solution the numerator, thus making your ratios above 1).

Report your findings. Plot the average distances and average ratios against
each other. Plot each of these quantities against the number of coins in the
coin set. What is the distribution of each of the two quantities computed?
Discuss your findings.

Question Q5. You can measure the running time of each algorithm by
simply computing the time each method gets executed. To conduct a proper
efficiency study, you need to construct some large test cases.

Create random coin sets of sizes

5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000

(feel free to insert more data points in betwen)

For each size, generate 20 different coin collections. For each coin collec-
tion, run both the greedy and the dynamic programming algorithm on the
following values:

• 100;

• 10000;

• 1000000;

• 2 ·Max− 1, where Max is the largest denomination in the collection.

Compute the average running time per size of coin denomination collection
for each of these four values. Plot the average running time against the size
of the input to the Making Change problem computed as the number of
integers. (note that for a 100-denomination coin collection, the size of input
is actually 101, as the amount to change is also part of the size of input).

Task 2: Rod Cutting

Rod Cutting Problem: Given an integer N , the length of a metal rod
and an arrayP [1..N] of prices for rods of length 1..N respectively, output a
set of numbers l1 . . . , lk, such that

∑
k

i=1
li = N and

k∑

i=1

P [li]

is maximized.

6

Your task. For this task, implement the dynamic programming algorithm
for solving the Rod Cutting problem using three different approaches: iter-
ative bottom-up approach, recursive top-down approach without memoization
and recursive top-down approach with memoization. Each of the three ap-
proaches is discussed below.

Iterative Bottom-up approach. This implementation shall, compute,
one-by-one the optimal ways to cut rods of sizes 1, 2, 3, . . ., and up until N :
the problem input. The optimal value and the optimal solution for each size
is saved in a data structure that is maintained throughout the process.

Recursive Top-down approach without memoization. This is, es-
sentially (and strictly speaking), a divide-and-conquer implementation, rather
than a dynamic programming one. In order to cut the rod of length N , your
algorithm will represent N as all sums N = M1 + M2, and then recursively
finds the optimal cuts for rods of lengths M1 and M2. There is no memoiza-
tion, so, optimal cuts for rods of sizes less than N will be evaluated multiple
times.

Recursive Top-down approach with memoization. This is the top-
down version of dynamic programming. This is essentially a version of the
recursive top-down approach described above, with the caveat that for each
rod size, the optimal solution is computed exactly once, memoized and
used in subsequent calls to the recursive method.

Implementation Details

You will implement a Java class RodCutter, which will contain the following
features:

• int[] Price: an array of rod prices. Price[i] is the price of a rod
of length i.

• RodCutter(int[] P, int N: initializes an instance of the RodCutter

class using the array P as the list of rod prices. It is assumed that N

is the size of the array P.

• cutIterative(): this method implements the bottom-up iterative ver-
sion of the dynamic programming algorithm for solving the Rod Cutting
problem. You may select any return type that is convenient for your
implementation.

• cutRecursive(int N): this method implements the top-down recur-
sive, no memoization version of the dynamic programming algorithm
for solving the Rod Cutting problem. You may select any return type
that is convenient for your implementation.

7

• cutRecursiveMem(int N): this method implements the top-down re-
cursive algorithm for solving the Rod Cutting problem, which uses
memoization. You may select any return type that is convenient for
your implementation. (Note: make sure your RodCutter class defini-
tion has the data structures necessary to support memoization.)

Feel free to implement other features for this class. For debugging pur-
poses, you shall also implement a PrintSolution() method, which prints
the solution computed by any of your implementations of the solution algo-
rithm (you get to choose what input parameters this method has).

Comparative Study

The key goal of your study is to compare the running time of your three im-
plementations. You will collect two metrics: the number of comparisons

it takes to compute the solution and the running time of the solution

algorithm.

Number of comparisons. A countable comparison in your algorithm
implementations is any executed comparison, which “touches” any value
representing the cost of a specific fragment of a rod (e.g., the cost of a rod
fragment of size k < N , where N is the full length of the rod). An ignorable
comparison is any direct or implied comparison performed in the course of
running a counter-driven loop.

Running time. Measure the exact time your program spends running
your cutIterative(), cutRecursive() and cutRecursiveMem() methods.

Collect these two metrics as follows:

• Generate 2000 instances of the Rod Cutting problem. For each in-
stance, remember its size M = N +1: the length of the Price[] array
plus one number to store the value N itself.

• Run all three methods (cutIterative(), cutRecursive(), cutRecursiveMem())
on each instance of the problem. Collect the two metrics.

Plot the two metrics vs. input size for each of the three algorithms used.
Write a report, provide analysis of observed behavior.

Deliverables

This part of the lab has both electronic and hardcopy deliverables. All
electronic deliverables shall be submitted by the assignment deadline using
the following handin command:

Use handin to submit:

8

$ handin dekhtyar-grader lab04-349 <files>

The hardcopy deliverables shall be submitted to the instructor during the
lab period on Tuesday, April 29.

Electronic Deliverables. Submit all the Java files you created/modified
for this lab. Submit a README file with your name, and instructions for
running your code for the grader. Submit a softcopy of your report (feel free
to combine all your analysis into a single document) names Lab04Report.pdf

Hardcopy Submission. A hardcopy of your Lab04Report.pdf file should
be submitted to the instructor before or during the lab period on April 29.

Note that we expect that all your programs will compile from the com-
mand line. Make sure you test for that.

Good Luck!

9

