Spring 2010 CSC/CPE 349: Algorithms

Alexander Dekhtyar.

Lab 6: Dynamic Programming: Part 3.
String Comparison Algorithms

Due date: Thursday, May 25, beginning of the lab.

Lab Assignment

Assignment Preparation

This is a pair programming lab. The goal of this lab is to let you imple-
ment more dynamic programming algorithms.

Each pair will develop, validate, test and submit one copy of the assign-
ment. Each partner in a pair will get the same grade for this lab.

The Task

Each team will implement three algorithms for comparing two strings of
text:

1. LCS: Longest Common Subsequence;
2. Edit Distance;

3. Alignment;

Brief notes concerning each of the three algorithms are given below.

Longest Common Subsequence

Your implementation of the LCS (Longest Common Subsequence) algorithm
shall take as input two strings and shall compute all necessary data struc-
tures. A separate method shall be implemented to print the discovered
longest common subsequence and its length out.

You can implement LCS by creating a Java class (say LCS) whose instance
variables include the two tables used in the dynamic programming algorithm
for finding the LCS. Then, you will need to implement two methods:

e void findLCS(String x, String y) (or, alternatively int findLCS(String
x, String y)): this method takes two strings and runs the dynamic
programming algorithm that discovers their LCS by filling out the con-
tents of the two tables (see Section 15-4 of the textbook). The method
can return the length of the found LCS.

e String getLCS(): this method shall assume that £indLCS () has suc-
cessfully run. It will traverse the created tables to recover the actual
longest common subsequence and return it.

(as usual, you may implement any other methods in this class)

Program for validation. Your submission shall include a program LCSTest . java.
The program will take as input either one or two file names.

e If only one file name is provided, it shall contain two strings separated
by a line break in it.

e If two file names are provided, each file shall contain one string. The
string shall be assembled from the entire content of the file by removing
all line-feed and carriage return characters from it

The LCSTest . java program shall read the input strings from either one
or two files, shall run the LCS algorithm on them, and shall output (print)
the longest common subsequence and its length.

Example. Consider the following two files in1 and in2:

inil:
ABCABC
ACCACC

in2:
ABCABBCCA

Then:
java LCSTest inl

shall find the LCS of "ABCABC" and "ACCACC" and output something like:
4: ACAC

(note, you may choose a somewhat different output format as long as both
the LCS and its size a clear)

At the same time,

java LCSTest inl in2

shall find the LCS of "ABCABCACCACC" and "ABCABBCCA" and shall output
something like

8: ABCABCCA

Program for experimental study. Each team shall conduct a short
experimental study using the LCS implementation. You will measure the
running time of your implementation of the LCS algorithm (only the part
that fills the data structures with data, not the recovery part), as it depends
on the size of the input.

The study shall consist of two parts. In one part you will compare a
string to itself. In the other part you will compare randomly generated
strings. In both parts you will generate strings of various increasing sizes.
For simplicity, use the alphabet!

{A,T,C,G}

For the first part, for each string size you consider, generate 10 random
strings of that size and run the LCS algorithm on each string compared to
itself.

For the second part, for each string size you consider, generate 10 pairs of
random strings and run the LCS algorithm on each pair.

In both studies, for each size considered, collect the average of the 10 runs.

You can choose string sizes on which you run your algorithm in any way
you want, provided that your study accomplishes the following:

e You report results for at least 10 different sizes.

e The study pushes the limits of productivity of your algorithm, i.e., at
the 2-3 longest string sizes, your implementation starts taking notica-
ble time to complete.

Name the program running your study (LCSStudy. java.

Based on the results reported by the program, prepare a report that con-
tains the following information:

e graphs/plots documenting the results of your study.

e your observations on how far your implementation goes (i.e., when
your implementation starts taking considerable time to finish).

e your observations on whether it appears to be easier or harder to find
an LCS of a string with itself than it is to find an LCS of two random
strings, or whether there is no difference.

!Note, while only this alphabet is used in all your studies, all your algorithm imple-
mentations shall be alphabet-independent.

Edit Distance

The version of the Edit Distance problem you will be implementing is the
one we covered in class (not the one found in the textbook)?

To remind you, the Edit Distance problem is stated as follows: given two
strings « and y, find the minimal number of edits required to change x into
y. The edits we consider for this assignment are:

e Insertion. A character y; is inserted in position ¢ of the string.
e Deletion. A character z; is deleted from position 1.

e Replacement. A character x; is replaced with character ;.

Alternatively, we can cast the edit distance problem as follows. An align-
ment between two strings x and y, is a mapping that pits each character x;
of x against either some character y; of y or against an empty slot _, and
which respectively pits every character y; of y against some character x; of
x or _, such that if i+ < j and both x; and z; are mapped to characters yy
and y; respectively of y, then k& < [(i.e., the mapping follows the order of
characters in the words).

Example. Consider two strings o ="STAND" and y ="SNEEZE". Below
we show two possible alignments of these two strings:

STAND_ STAND___
SNEEZE S__NEEZE

The cost of alignment is the number of positions in the alignment where
the two characters do not match. For example, the cost of the first alignment
above is 5, and the cost of the second alignment is 6.

The edit distance between x and y is the smallest alignmnet cost.

Implementation

Your implementation of the Edit Distance algorithm shall take as input two
strings, compute all necessary data structures and return the edit distance.
A separate method shall be implemented to retrieve an alignmnet corre-
sponding to the computed edit distnce.

You can implement the edit distance algorithm by creating a Java class
(say EditDistance) whose instance variables include the tables used in the
dynamic programming algorithm for finding the the edit distance. Then, you
will need to implement two methods:

2The textbook (Section 15-5) describes a more general problem, with more different
types of possible edits.

e int findEditDistance(String x, String y): this method takes
two strings and runs the dynamic programming algorithm that dis-
covers their edit distance by filling out the contents of the two tables.
The method returns the edit distance.

e void getAlignment () : this method shall assume that findEditDistance()
has successfully run. It will traverse the created tables to recover the
alignment associated with the edit distance and print it out. To print
out the alignment use the convention as above: print each string on

a line of its own, and indicate insertions and deletions using the
character.

(as usual, you may implement any other methods in this class)

Program for validation. Your submission shall include a program EDTest . java.
The program will take as input either one or two file names.

e If only one file name is provided, it shall contain two strings separated
by a line break in it.

o If two file names are provided, each file shall contain one string. The
string shall be assembled from the entire content of the file by removing
all line-feed and carriage return characters from it

The EDTest. java program shall read the input strings from either one
or two files, shall run the edit distance algorithm on them, and shall output
(print) the edit distance between the two strings and the corresponding
alignment.

Example. Consider the following two files inl and in2:

inil:
ABCA
ACA

in2:
ABCAACCA

Then:
java EDTest inl

shall find the edit distance of "ABCA" and "ACA" and output something
like:

Edit distance: 1
ABCA
A_CA

(note, you may choose a somewhat different output format as long as both
the edit distance and the alignmnet are clear)

At the same time,
java ATest inl in2

shall find the edit distance of "ABCAACA" and "ABCAACCA" and shall output
something like

Edit distance: 1
ABCAAC_A
ABCAACCA

Program for experimental study. FEach team shall conduct a short ex-
perimental study using the edit distance implementation. You will measure
the running time of your implementation of the edit distance algorithm (only
the part that finds the edit distance, not the alignment recovery part), as it
depends on the size of the input.

The study shall consist of two parts. In one part you will compare a
string to itself. In the other part you will compare randomly generated
strings. In both parts you will generate strings of various increasing sizes.
For simplicity, use the alphabet

{A,T,C,G}

For the first part, for each string size you consider, generate 10 random
strings of that size and run the edit distance algorithm on each string com-
pared to itself.

For the second part, for each string size you consider, generate 30 pairs of
random strings and run the edit distance algorithm on each pair.

In both studies, for each size considered, collect the average of the 10/30
runs. In the second study, for each size, collect the average edit distance
observed.

You can choose string sizes on which you run your algorithm in any way
you want, provided that your study accomplishes the following:

e You report results for at least 10 different sizes.

e The study pushes the limits of productivity of your algorithm, i.e., at
the 2-3 longest string sizes, your implementation starts taking notica-
ble time to complete.

Name the program running your study (EDStudy.java.

Based on the results reported by the program, prepare a report that con-
tains the following information:

e graphs/plots documenting the results of your study.

e your observations on how far your implementation goes (i.e., when
your implementation starts taking considerable time to finish).

e your observations on whether it appears to be easier or harder to find
the edit distance of a string with itself than it is to find the edit distance
of two random strings, or whether there is no difference.

e a plot documenting the observed behavior of the average edit distance
between two random strings on the size of the strings.

e your observations concerning the behavior of the average edit distance
as the size of the strings increases.

Note: If you are getting weird results with only 30 repetitions, try 100,
200, 500 or 1000 repetitions for each size of the strings you include in your
study and take an average. As you increase the number of repetitions, you

should at some point start seeing some stabilized behavior3.

Alignment

The string alignment problem is a generalization of the edit distance problem.

An alignment between two strings is defined in the same way as for the
edit distance problem.

What differs is the notion of the cost of alignment. We are given a matching
function M which gives a cost of aligning two characters. The cost of the
alignment is the sum of costs of aligning each pair of characters.

Example. Consider two strings, £ ="START" and y ="ARTS". Our alpha-
bet is {A,T,S, R}. Consider the matching cost function M defined in the
table below:

AT R S _
Ao 1 5 5 2
T|1 0 5 5 2
R{s 5 0 1 2
S|5 5 1 0 2
12 2 2 2 o

According to this table, M(A,T) = 1, while M (A, R) = 5, which essen-
tially means that it is much better to align A with T than it is to align it
with R. The function M in the example above is symmetric and M (c,c) =0
for any character ¢, but these two properties, while common in real-life sit-
uations, are not requirements.

Cosider the following two alignments of our strings « and y:

3This is a true exploration task. I actually don’t know how this dependency would
look like and am curious to find out.

START _ START _
_ARTS _A_RTS

The cost of the first alignment is computed as follows:

costy = M(S,-)+ M(T,_) + M(A,A) + M(R,R) + M(T,T)+ M(_,S) =
24+24+0+0+0+2=6.

The cost of the second alignmnet is:

costo = M(S,_)+ M(T,_A)+ M(A,_)+ M(R,R)+ M(T,T)+ M(_,S) =
2+14+2404+0+2=7.

We see that the first alignment has a lower cost.

The alignmnet problem is to find an alignment of two given strings x and
y which minimizes the alignment cost under a given matching function M.

Note: The edit distance problem is essentially an instance of the align-
mnet problem, where the matching cost function M is M(c,¢) = 0 and
M(c,d) = M(-,d) = M(c,-) =1 for ¢ # d.

Implementation

Modify your edit distance algorithm to solve the alignment problem. Imple-
ment the solution as described below.

Your implementation of the Alignment algorithm will be a Java class Align-
ment which will have the following methods:

e void setMatchingCost(..): this method shall take as input a data
structure representing a matching cost function, and shall set it as
the matching cost function for the alignment cost computations. The
choice of how to represent the matching cost function internally is left
to you. The Alignment class should have an instance variable (or
variables) representing the matching cost function.

e int findAlignment (String x, String y): this method takes two
strings and runs the dynamic programming algorithm that discovers
their best by filling out the contents of the necessary tables. The
method returns the cost of the best alignment.

e void getAlignment () : this method shall assume that findAlignment ()
has successfully run. It will traverse the created tables to recover the
alignment associated with the best alignment cost and print it out. To
print out the alignment use the convention as above: print each string
on a line of its own, and indicate insertions and deletions using the “_”
character. (you may also, optionally indicate the cost of aligning each

pair of characters)
To help your algorithm, you may implement the following two methods:

e Match(char x, char y): returns M(x,y).

e getCost(String x, String y): x, y are two strings of the same
length representing an alignment (i.e., some characters can be "_").
The method returns the cost of the given alignment between x and y.

Note: your implementation may find it more convenient for the pa-
rameters of this method to be something else (depending on the data
structures you use in the algorithm).

(as usual, you may implement any other methods in this class)

Program for validation. Your submission shall include a program ATest. java.
The program will take as input either two or three file names.

e If two file names are provided, the first file will contain two input
strings separated by a line break, while the second file will contain the
description of the matching function (see below).

e [f three file names are provided, the first two files shall contain the two
input strings. Each string shall be assembled from the entire content
of the file by removing all line-feed and carriage return characters from
it. The third file shall contain the desription of the matching function.

The ADTest. java program shall read the matching function and the in-
put strings from either one or two files, shall run the alignment algorithm
on them, and shall output (print) the best alignment cost and the best
alignment between the two strings.

Representing matching function. The matching function file shall have
a simple format. The first line of the file is a comma-separated list of al-
phabet characters, followed by _, representing the insertion/deletion in the
alignment. The subsequent rows of the file store the values of the cost func-
tion. If Ay, Ag, ..., Ak, _is the order of the characters in the first row, then
the second row represents the costs

M(AhAl)vM(AlvA?)w .. aM(AlaAK)¢M(A1>—)'

Subsequent rows continue the pattern. M(_,_) will always be +oo, but for
the sake of ease of parsing, it will be listed in the file as 0. (you just need
to make sure that you use the right value when computing). For example, a
file match representing the matching cost function M from above will look
as follows:

Example. Consider the following two files in1 and in2:

inil:
START
ARTS

in2:
STARTSTART

Then:
java ADTest inl match

shall find the best alignment of "START" and "ARTS" and output something
like:

Alignment cost: 6
START_
__ARTS

(note, you may choose a somewhat different output format as long as both
the alignment cost and the alignmnet are clear)

At the same time,
java ATest inl in2 match

shall find the best alignment of "STARTARTS" and "STARTSTART" and shall
output something like

Alignment cost: 6
START__ARTS
STARTSTART_

Program for experimental study. FEach team shall conduct a short
experimental study using the alignment implementation. You will measure
the running time of your implementation of the alignment algorithm (only
the part that finds the best alignment cost, not the alignment recovery part),
as it depends on the size of the input.

The study shall consist of two parts. In one part you will compare a
string to itself. In the other part you will compare randomly generated
strings. In both parts you will generate strings of various increasing sizes.
For simplicity, use the alphabet

{A,T,C,G}

and the matching function M:

10

For the first part, for each string size you consider, generate 10 random
strings of that size and run the alignment algorithm on each string compared
to itself.

For the second part, for each string size you consider, generate 30 pairs of
random strings and run the alignment algorithm on each pair.

In both studies, for each size considered, collect the average of the 10/30
runs. For the second study, also collect the average best alignment cost.

You can choose string sizes on which you run your algorithm in any way
you want, provided that your study accomplishes the following:

e You report results for at least 10 different sizes.

e The study pushes the limits of productivity of your algorithm, i.e., at
the 2-3 longest string sizes, your implementation starts taking notica-
ble time to complete.

Name the program running your study (AStudy.java.

Based on the results reported by the program, prepare a report that con-
tains the following information:

e graphs/plots documenting the results of your study.

e your observations on how far your implementation goes (i.e., when
your implementation starts taking considerable time to finish).

e your observations on whether it appears to be easier or harder to find
the alignment of a string with itself than it is to find the alignment of
two random strings, or whether there is no difference.

e a plot documenting the observed behavior of the average best align-
ment cost for two random strings as the size of the strings increases.

e your observations concerning the behavior of the best alignment cost
as the size of the strings increases.

Note: If you are getting weird results with only 30 repetitions, try 100,
200, 500 or 1000 repetitions for each size of the strings you include in your
study and take an average. As you increase the number of repetitions, you

should at some point start seeing some stabilized behavior?.

4This is a true exploration task. I actually don’t know how this dependency would
look like and am curious to find out.

11

Report

Your written report shall contain the results of the studies of all three algo-
rithm implementations as specified above.

As most of you use MS Excel to generate graphs and plots for your studies,
please follow the instructions below.

o Legend. Make certain that all your axes are properly labeled. Each
series needs to be properly named. The legend shall be placed at the
bottom of the graph: this makes it possible to extend the coordinate
plane in the X direction.

e Size. Please, do not hesitate to include large graphs/plots in your
report. The larger the graph, the more visible your results are.

e Series. Please, edit the plot/graph to make sure that the size of MS
Excel elements representing the points in the series is appropriate.
Usually, this means reducing the size of the ”points”.

e Coordinate plane. Please edit the properties of the graph/plot to
make sure that your coordinate plane looks appropriate. The X-axis
and Y'-axis ranges should be appropriate (sometimes Excel’s best guess
can be substantially improved).

e Overall look. Please make certain that the graph/plot looks good to
you. Do no hesitate to edit the properties of the plot to make it look
better and to make the data more visible.

In addition, before creating a graph/plot, please take a pause and think
about the best way in which you can represent the data. Pick the represen-
tation that would make the data more understandable to you.

In this lab, poor choices for information visualization will be subject to
penalties.

Deliverables

This part of the lab has both electronic devliverables and a hardcopy deliv-
erable.

All electronic deliverables shall be submitted by the assignment deadline
using the following handin command:

Use handin to submit:

$ handin dekhtyar-grader 1ab06-349 <files>

12

Electronic Deliverables. Submit all the Java files you created for this
lab. This should include your LCSTest. java, LCSStudy. java, EDTest.java,
EDStudy. java, ATest.java, AStudy.java test programs in addition to
the Java classes implementing the dynamic programming algorithms and
any supplemental classes you have. Submit a README file with the list of
people on the team and any notes/comments/instructions. Finally, submit
an electronic copy of your report in PDF format.

Hardcopy Deliverables. At the beginning of the lab period on May 25
hand in the hardcopy of your report.

Good Luck!

13

