tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Algorithm Analysis in a Nutshell

Algorithm Analysis

Algorithm Analysis is

1. proof that the algorithm solves the given problem;

2. prediction of resources required by the algorithm.

Algorithm correctness. Algorithm correctness is typically stated as fol-
lows:

For each instance of the computational program given as input to
the algorithm, the algorithm outputs the solution to the problem.

Proving this is a challenge.

Prediction of Resources

RAM: Random Access Machine. A computational model with the
following properties:

e A single processor.

e Sequential execution of instructions. Instructions are executed
sequentially on a single processor, until the end of the algorithm.

e Infinite Random Access Memory. The number of memory cells
is not limited. It takes the same amount of time to access information
stored in any memory cell.

e Constant operation cost. Each operation executed by the process
has a specific cost associated with it (e.g., time it takes to complete).
While costs may be different for different types of operation, operations
of the same type always have the same cost.

e Operations/Instructions specified by pseudocode. The list of
instructions/operations performed by the RAM is limited to what is
used in our pseudocode:

— addition

— subtraction

— multiplication

— integer division

— remainder

— unary negation

— comparison (of two numbers)
— logical and (conjunction)
— logical or (disjunction)

— logical not (negation)

— assignment

— function call

— procedure call

— return value from function

— return from procedure

Note: all other pseudocode intructions/statements can be represented
as sequences of instructions/operations from the list above (e.g., if state-
ments involve comparisons, possibly together with computation of logical
operations)

Resources used by an algorithm. There are two main resources used
by the algorithm:

1. Processor time.

2. Memory used.

Analysis of the processor time needed to complete the algorithm is called
the analysis of the computational complexity (a.k.a. running time) of
the algorithm.

Analysis of the memory used by the algorithm is called the analysis of the
space complexity of the algorithm.

Complexity of algorithm vs. complexity of problem. We can ana-
lyze both the complexity of a computational problem and the complexity
of a specific algorithm solving the problem.

Remember:

e The (space/running time) complezity of an algorithm is the amount
of the resources needed for the algorithm to complete.

e The (space/running time) complezxity of a problem is the smallest
amount of the resources needed by some algorithm that solves the
problem.

Expressing complexity of an algorithm/problem. Complexity of an
algorithm /problem is usually expressed as a function of the size of the
input.

Input Size. May differ for different problems. Variants are:

e Number of items in the input.
e Number of bytes in the input.
e Number of bits in the intput.

e Multiple numbers repsenting respective sizes of different portions of the
input (e.g., number of vertices and number of edges in a graph).

Simplistic Algorithm Analysis

Consider our algorithm FindMax for finding the largest number in an array.
With each operation/instruction in the program we associate a known cost
Co- According to our model, this cost will always be the same for that specific
instruction/operation.

AvcoriTaM FindMax(N, A[1..N]) cost freq
begin
tmpMax«— A[1]; c1, 1 time
for i +— 2 to N do ca, N — 1 times
if tmpMax< A[i] then c3, N —1 times
tmpMax«— A[i; cs, 0-N —1 times
endif
endfor
return tmpMax; Cs 1 time
end

The running time of FindMax can be computed as the sum of all the costs
for all operations/instructions executed in the algorithm:

5
runningTime = Z freq(c) - ¢.
=1

In our case, the analysis is complicated by the fact that we may not know
how many times tmpMax«— A[i| statement is executed. We can only estimate
this number as follows:

e Best case: freq(cs) = 0. This happens when A[1] is the largest number
in the array.

e Worst case: freq(cq)= N-1. This happens when the array A is sorted
in ascending order (then, each array element is greater than the tem-
porary maximum found on the previous step).

We will, this estimate, both the best and the worst case scenarios:

runninglime(bestcase) = c1-14+ca-(N—1)+c3-(N—1)+c4-04+c5 = (c2+c+3)-N+(c1+c5—ca—c3).
runningTime(worstcase) = ci-1+ca-(N—1)4c3:(N—1)+cs-(N—1)+c5 = (ca+c+3+cq)-N+(c1+c5—ca—ca—c3).

Let co+c3 = a, cotc+3+cy =ad,c1+es—co—c3 =b, c1+c5—cy—ca—c3 =
b'. Then, we get:

runningTime(bestcase) = alN + b
runningTime(worstcase) = a’ N + b’

I both, the best, and the worst case, the running time of the algorithm
grows linearly with the size of the input N!

Asymptotic Algorithm Analysis

We claim that in the algorithm analysis, the knowledge of the specific con-
stants a, a’, b, b’ is not important. The important part is to know how fast
the running time of the algorithm ioncreases with the increase in
the size of the input.

The ”constants” do not matter because:

e The exact estimates for individual constants (e.g., ¢, co, etc.) are
hard to obtain.

e Different computational models may have different costs associated
with individual operations/instructions.

Asymptotic growth of functions.

We discuss some mathematical notation needed in order to analyze algo-
rithms.

©-notation. Let g(n) be a function. The set of functions ©(g(n)) is de-
fined as follows:

O(g(n)) = {f(n)|(Fe13ez3ng > 0)¥(n > ng)(0 < c1-g(n) < f(n) < ca-g(n))}-

Intuitively: f(n) is in ©(g(n)) if, starting from some point (ng), it can be
”sandwiched” between ¢ - g(n) and cg - g(n) for some values of ¢; and cs.

Ezample. Let g(n) = 5n + 3. We claim that fi(n) =n+ 100 and fa(n) =
40n — 4 both are in ©(g(n)).

For fi(n): consider ¢; = 0.2 and ¢ = 1. ¢; - g(n) = n + 0.6. For all
n>0,c-g(n) =n+06 <n+100 = fi(n). Take ng = 25. For all
n>ng, ca-g(n) =5m+3>n+100 (5n+3 —n — 100 = 4n — 97. therefore
5n 43 > n+ 100 as long as n > 25.) Therefore fi(n) € ©(g(n)).

For fa(n): consider ¢; =1, cog = 8, ng = 2. The arithmetics is left to you.

If f(n) € ©(g(n)), we say that g(n) is an asymptotically tight
bound on f(n).

Note: We can show that f(n) € ©(g(n)) iff g(n)in®(f(n)). (Can you
prove it?)

Ezample. Consider g(n) = a -n. We can show that any linear function
f(n)=b-N+ceBO(g(n)).
2

Ezample. Consider g(n) = a-n”. We can show that any quadratic
function f(n) = bn? +cn+d € O(g(n)).

Observation. For any polynomial Zf:o ¢;-n¥, its asymptotically tight

bound is a function g(n) = n*.

O-notation

Let g(n) be a function. The set of functions for which g(n) is an (upper)
asymptotic bound, denoted O(g(n)), is defined as

O(g(n)) = {f(n)|(3c > 0)(Ing > 0)(Vn > ne)(0 < f(n) < c-g(n))}

We write f(n) = O(g(n)) to mean f(n) € O(g(n)).

Ezample. Let g(n) = n?. We can see that f(n) = 5n% + 3 = O(g(n)).
Also, f'(n) = an +b = O(n?).

Observation. Given a function g(n), O(g(n)) C O(g(n)).

()-notation

Let g(n) be a function. The set of functions that are asymptotic upper
bounds of g(n), (i.e., functions, for which g(n) is an asymptotic lower
bound), denoted 2(g(n)), is defined as

Q(g(n)) = {f(n)|(Fc > 03ng > 0)(Vn > n9)(0 < ¢- g(n) < -f(n))}-

We write f(n) = Q(g(n)) to mean f(n) € Q(g(n)).

Ezample. Let g(n) = n% f(n) = 2n> + n+5 = Q(g(n)). In addition,
f'(n) =n34+n?+n+1=Q(g(n)). On the other hand, if h(n) = an + b,
then g(n) = n? = Q(h(n)).

Theorm: f(n)=0(g(n)) iff:

L f(n) = O(g(n));
2. f(n) = Qg(n));

o-notation

Let g(n) and f(n) be two functions. We say that f(n) = o(g(n)) iff
o f(n) = O(g(n));
o f(n)# O(g(n));

o-notation represents upper bounds that are not tight.

Example: f(n) = n = o(n?). f(n) = n-log(n) = o(n?). f(n) =n3 =
o(2™).

w-notation
Let g(n) and f(n) be two functions. We say that f(n) = w(g(n)) iff
o f(n) = Qgn));
o f(n) # O(g(n));

Alternatively: f(n) =w(g(n)) iff g(n) = o(f(n)).
w-notation represents lower bounds that are not tight.

Ezample: f(n) = n? = w(n). f(n) = n-log(n) = w(n - log(log(n))).
Fn) = 2" = w(n?)

Theorem: f(n) = o(g(n)) iff
fln) _

n—oo g(n)

Properties of asymptotic notation

Transitivity: The transitivity properties are as follows:

f(n) = 0O(g(n)), g(n) = O(h(n)) = f(n)=0(h(n))
f(n) = O(g(n)), g(n) = O(h(n)) = f(n) = O(h(n))
f(n) =Qg(n)), g(n) = Q(h(n)) = f(n)=Qh(n))
f(n) =o(g(n)), g(n) = o(h(n)) = f(n)=o(h(n))
f(n) = w(g(n)), g(n) = w(h(n)) = f(n)=w(h(n))

Reflexivity: The reflexivity properties:

f(n) = O(f(n))
f(n) =O(f(n))
f(n) = Q(f(n))

Symmetry: 0 is symmetric:

f(n) =0©(g(n)) iff g(n) =0(f(n))

Transpose Symmetry: The other four are anti-symmetric:

f(n) =0(g(n)) iff g(n)=Q(f(n))
f(n) =o(g(n)) iff g(n) =w(f(n))

Note: All real numbers are comparable: for two numbers a, b, either a >
bora=bora<b. Butnot all functions f(n) and g(n) are comparable in
the sense of being asymptotic bounds of each other. In particular, periodic
functions (or oscilating functions) are incomparable with other functions.

Consider f(n) =n?; g(n) = n!t2® mod 2) Eggentially, g(n) =n when n

is even and g(n) = n® when n is odd. This means, that f(n) and g(n) are
incomparable. (we can actually prove formally that neither f(n) = Q(g(n))
nor g(n) = Q(f(n)), for example, using the definition of €2.)

Growth of functions

The following ”classes” of functions appear commonly in the analysis of
algorithms. They are listed in the ascending order of asymptotic growth.

Category Simple form Representative

Constant const fn)=5

Logarithmic log(n) (a.k.a logy(n)) f(n) =log(n) +1

Polylog Zf:o c; - log'(n) f(n) =log?(n) + 3log(n) — 1
Square root \/n f(n)=+vn+3+log(n)+1
Linear n; an+b f(n) =5n+ 56

NlogN n -log(n) f(n) =nlog(n) +4n —5
Quadratic ~ n? f(n) =3n? +n+2log(n) — 4
Cubic n3 f(n) =50 — 5n? + sqrt(n) + 5log(n)
Polynomial ~ n* f(n)=n*+1

Factorial n! f(n) =n!+n’—log(n)
Exponential 2" f(n) =2" +n* + nlog(n)

