Finding Second Largest Element in an Array

The Problem

Input: An array $A[1..N]$ of integers and N, the number of elements in the array.

Output: The second largest number in the array.

Problem Analysis

This is an instance of the Selection problem: $V(N,k)$: given an array of numbers of size N find kth largest (or smallest) element.

Our goal here is to design an efficient algorithms for just the $V(N,2)$ instance of this this problem. We design this algorithm in two steps.

Step 1. In a $V(N,1)$ algorithm (i.e., selection of the largest element), the largest element must be compared to the second-largest.

Proof. To find the largest element, we must keep comparing elements of the array to each other, until all but one element lose a comparison. The second largest element must lose a comparison. But it can only lose to the largest element.

Conclusion 1. We can find the second largest element as follows:

1. Find the largest element.
2. Collect all elements of the array that were directly compared to the largest element.
3. Find the largest element among them.
Figure 1: Example of work of \texttt{FindMaxRecursive()} algorithm on an array of 12 elements. Four elements (1, 3, 11, 10: double-circled above) are compared to the largest element (12, highlighted).

Step 2. To design an efficient algorithm for finding the second largest element using the observation above, we need an algorithm for finding the largest element, where the largest element is compared to relatively few other elements.

The simple \texttt{FindMax()} algorithm that uses linear scan is not good because in the worst case (A[1] is the largest element), the largest element participates in all $N - 1$ comparisons.

However, the \texttt{FindMaxRecursive()}, that uses the tournament approach to finding the largest number will work. The work of this algorithm on an array of 12 numbers\footnote{We purposely chose the number that is not a power of 2.} is shown on Figure 1.

The algorithm itself is repeated below.

\begin{verbatim}
begin
 if I = J then return A[I]; // base case
 max1← FindMaxRecursive(I, I+(J-I)/2, A);
 max2← FindMaxRecursive(1+I+(J-I)/2,J, A);
 if max1>max2 then return max1
 else return max2;
end
\end{verbatim}

Proposition. In \texttt{Algorithm FindMaxRecursive()} the largest element participates in at most $\lceil \log_2(N) \rceil$ comparisons.

Proof. We show that any element of the array A participates in no more than $\lceil \log_2(N) \rceil$.

On each recursive step of the algorithm, the algorithm splits the range $[I..J]$ (i.e, $J - I + 1$ element) of elements in the array A into two parts. We observe, that the size of the first part (used in the first call) is $\lceil \frac{J-I+1}{2} \rceil$, while the size of the second part (used in the second call) is $\lceil \frac{J-I+1}{2} \rceil$. Starting with the $[I..N]$ range of N numbers, the first call (\texttt{FindMaxRecursive}(I,
Algorithm FindSecondMax(N, A[1..N]) returns
begin
 Compared ← FindMaxTournament(1, N, A[1..N]);
 Compared2 ← FindMaxTournament(2, Compared[0], Compared[2..Compared[0]]);
 return Compared2[1]
end

Function FindMaxTournament(I, J, A[I..J], N) returns Compared[0..K]
begin
 if I = J then // base case
 Compared[0..N];
 Compared[0] ← 1;
 Compared[1] ← A[I];
 return Compared;
 endif

 Compared1 ← FindMaxTournament(I, I+(J-I)/2, A, N);
 Compared2 ← FindMaxTournament(1+I+(J-I)/2, J, A, N);
 if Compared1[1] > Compared2[1] then
 K ← Compared1[0]+1;
 Compared1[0] ← K;
 Compared1[K] ← Compared2[1];
 return Compared1;
 else
 K ← Compared2[0]+1;
 Compared2[0] ← K;
 Compared2[K] ← Compared1[1];
 return Compared2;
 endif
end

Figure 2: Algorithm FindSecondMax() for finding the second largest element in an array, and function FindMaxTournament() used in it.

I+(J-I)/2, A)) can be recursively repeated ⌈log₂(N)⌉ times. Each recursive call yields a single comparison. Therefore each element of the array can be compared to no more than ⌈log₂(N)⌉ other numbers.

Efficient Algorithm for Finding the second largest element

Using the two observations from above, an efficient algorithm for finding the second largest number will work as follows:

1. Find the largest element of the array using the tournament method.
2. Collect all elements of the array that were compared to the largest element.
3. Find the largest element among the elements collected in step 2 (can use any method here).

Step 2 Issues. How can we efficiently collect all elements of the input array that were compared to the largest element of the array?

Essentially, we would like to associate with the largest element of A an array Compared[] of elements A was compared to. This, however, needs to
be done carefully. We do not know upfront which array element is going to
be the largest, so we will carry information about all comparisons an array
element won until this element loses a comparison.

From the technical side, we will change the \texttt{FindMaxRecursive()} algorithm
to return an array of integers \texttt{Compared[0..K]}. We will establish the following
convention:

- \texttt{Compared[0]} = \texttt{K} (i.e., the 0th element of the array holds the length
 of the array);
- \texttt{Compared[1]} = \texttt{max} (i.e., the first element of the array is the number
 that \texttt{FindMaxRecursive()} would return;
- \texttt{Compared[2]}, \ldots, \texttt{Compared[K]} are all numbers with which \texttt{max}
 has been compared thus far.

Using these conventions, the \texttt{Algorithm FindSecondMax()} can be written
as shown in Figure 2.

\textbf{Algorithm Analysis: Running time and number of comparisons.}
From our study of \texttt{FindMax()} and \texttt{FindMaxRecursive()} algorithms, we know
that both of them have running time $O(N)$ and use $N - 1$ comparisons for
an array of size N.

Using the Proposition from above, we analyze the running time and the
number of comparisons for \texttt{FindSecondMax()} as follows:

- The first call to \texttt{FindMaxTournament()} uses $N - 1$ comparisons and has
 running time $O(N)$.
- The second call to \texttt{FindMaxTournament()} passes an array of size at
 most $\lceil \log_2(N) \rceil$ and therefore, it uses $\lceil \log_2(N) \rceil - 1$ comparisons and
 runs in $O(\log_2(N))$.
- Therefore, \texttt{FindSecondMax()}:
 - Uses $N - 1 + \lceil \log_2(N) \rceil - 1 = N + \lceil \log_2(N) \rceil - 2$ comparisons;
 - Has running time $O(N) + O(\log_2(N)) = O(N)$.

\textbf{Lower Bounds}

\textbf{Note:} In general, proving lower bounds on running time of algorithms is
very hard, and requires long proofs.

\textbf{Trivial lower bounds.} Time to read input. If size of input is N, and the
problem requires all input to be read, than $\Omega(N)$ is a trivial lower bound
on the running time for any algorithm solving the problem.

\textbf{Lower Bound for Finding Largest Number}

\textbf{Theorem.} Finding the largest number in an array of N numbers cannot
be done in less than $N - 1$ comparisons.
Proof. Each comparison eliminates one candidate for the largest number. In an array of N numbers $N - 1$ numbers must be eliminated. Therefore, at least $N - 1$ comparisons must take place.

Note. Combining with the known upper bound on the number of comparisons, we obtain:

Algorithms $\text{FindMax}()$ and $\text{FindMaxRecursive}()$ are optimal in terms of number of comparisons.

Lower Bound for Finding Second Largest Number

We state the following theorem without proof.

Theorem. Finding the largest number in an array of N numbers requires at least $N + \lceil \log_2(N) \rceil - 2$ comparisons.

Note. Combined with our upper bound we obtain the following:

Algorithm $\text{FindSecondMax}()$ is optimal in the number of comparisons.