tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Greedy Algorithms: Problems

Problems That Have Greedy Optimal Solutions

Problem 1: Making Change

Problem. A cashier at a store accepts money in payment for goods and
needs to make change. The money comes in a finite number of fixed coin and
bank note denominations. Assuming that the cashier has access to unlimited
quantities of bank notes and coins of every denomination, the cashier needs
to give change using the smallest number of coins/bank notes given a specific
amount of money.

Input.

e M[1..K]: array of coin/bank note denominations sorted in descending
order: M[1] > M[2]... > M[K].

e K: number of coins/bank notes.

e Amount: the amount of change to be given. (e.g., 27 for 27 cents, 234
for $2.34, etc.)

Output. An array Change[l..K|. Changeli] is the number of coins/bank
notes of denomination M{i].

Problem 2: Egyptian Fractions

Problem. Given a simple fraction 7> (n < m), represent it as the sum:

n_kl
el D

=1

S5

Historic Note. Ancient Egyptians represented fractions as sums of unit
fractions (i.e., fractions of the form % For example,

s_1.1. 1
9 2 3 18

Theorem. Any rational number 0 < x < 1 can be represented in the
Egyptian fraction form. That is, for any 0 < < 1, there exists such k£ > 0,
and such a; < ag < ...ayg, that

x:Zkaii.

i=1
Input. Two numbers: n (numerator) and m (denominator), s.t., n < m.

Output. An array EF[0..K], where EF[0] = K and EF[i] for 1 <i < K
is the denominator of the ith largest unit fraction, such that:

EF0]
n_ Z; EF[i]

Problem 3: Activity Selection

Problem. You are trying to schedule a list of activities to take place in
a conference room. A number of activity requests are presented to you.
For each activity, the request contains the start and the end time. Your
goal is to produce the activity schedule for the conference room that would
accommodate as many activities as possible.

Notes.

e Each activity A; from the input list Aq,... Ay, has the duration
[start(A;), end(A;)),
a semi-open interval.
e Only one activity per time can be scheduled.
e Two activities, whose intervals overlap are called conflicting.

e From each set of conflicting activities, no more than one activity can
be scheduled.

e The best solution has the largest possible number of scheduled
activities.

(Note, that, generally speaking, other criteria are also possible, e.g.,
maximizing the time the room is in use).
Input.

e N: number of activities.

e A[1.N][1..2]: array of start (A[i|[1]) and end (A[:][2]) times of the
activities.

Output. S[0..N]. S[0] contains the number of scheduled activities'. For
1 <i <N, S[i] =1if A[i] is scheduled and S[i] = 01is A[i] is NOT scheduled.

Problem 4: Optimal Announcement Schedule

Problem. Consider a schedule of activities just like in the Activity Se-
lection problem. In this problem, the activities happen in various location
on your campus. Each room is equipped with a PA system. You need to
make a really important announcement so that every person participating
in any activity would hear it. Find the times at which you should make the
announcement assuming that you want to use the PA system as few times
as possible.

Note. This is also known as the minimal stab set problem:

e A time point x stabs an activity A(start(A),end(A)) iff x € [start(A), end(A)).

e Given a set of activities Ay, ... Ay, a stab set S is the set of time points
S = {s1,... 5K}, such that every activity A; is stabbed by at least on
time point.

e The optimal announcement schedule problem can now be rephrased as
follows:

Given a set of activities, find a stab set of smallest cardinality
for it.

Input.

e N: number of activities.

o A[1.N][1..2]: array of start (A[i|[1]) and end (A[:][2]) times of the
activities.

Output. An array S[0..K], where S[0] = K is the number of stab points
and S[1],...,S[K] is the list of stab points. (KX must be the smallest possi-
ble)

Problem 5: Room Assignment

Problem. This time you have control over a large number of rooms. As in
the Activity Selection problem, you receive requests for activities to schedule.
Your goal is to schedule all activities using as few rooms as possible.

Notes. Another name for this problem is interval graph coloring. It is an
instance of a more general graph coloring problem: given a graph G = (V, E),
assign colors to all nodes such that every edge has end-points of different
colors.

Each activity can be viewed as an node in a graph. Two activities are
connected by an edge if they conflict. Each color is matched to a room
number. The graph obtained this way is called an interval graph.

!Because we can.

Input.

e N: number of activities.

e A[1..N][1..2]: array of start (A[i|[1]) and end (A[:][2]) times of the
activities.

Output. Array R[1..N], where R]i] is the room number (color) of activity
Ald].

Fractional Knapsack

Knapsack Packing problems come in a number of varieties and usually involve
selecting the right items/quantities to optimize the weight/value of a load
that can be carried in a knapsack of a limited capacity.

The Fractional Knapsack is one of the simpler versions of the problem.

Problem. You have a limited-capacity knapsack and want to pack it tightly
with a variety of goods from a warehouse. A finite selection of goods is avail-
able for choosing from the warehouse. With each type of good we associate
the available quantity and the cost of a unit measure. The task is to deter-
mine the quantity of each type of good to put in the knapsack, such that
the total value of the goods in it is maximized.

Input.

e (' capacity of the knapsack.

e K: number of different goods.

G[1..K]: available quantities of goods.

VI[1..K]: value of goods.

Output. Array Sack[l..N], such that,

e Sackl[i] represents the amount of good with index i to put in the knap-
sack.

e For all 1 <i< N, 0 < Sack[i] < GJi].
. Efi 1 Sackli] = C (knapsack capacity reached).

o YK (Sack[i] - V]i]) is maximized.

