
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Greedy Algorithms: Theory

Optimization Problems

Greedy algorithms and dynamic programming algorithms1 are usually designed
for a special class of problems called optimization problems.

Optimization Problem. A computational problem in which the object is
to find the best of all possible solutions is called an optimization problem.

Typically, an optimization problem comes with an objective function

which maps solutions to the problem to a set of values. An optimal so-

lution is a solution that either maximizes or minimizes (depending on the
requirements of the problem) the objective function.

Example. Making change problem is an optimization problem. Given N ,
the amount of money to give in change, the problem space consists of a
potentially large number of possible solutions: any collection of coins that
adds up to N is a possibility. For, example, here are all possible ways in
which one can make 11 cents in change:

1To be studied next.

1

The objective function evaluating the quality of a solution Sol = {coin1, . . . , coins}:

val(Sol) = |Sol| = s.

For the Making Change problem, an optimal solution minimizes the value
of the objective function val().

Properties of Optimization Problems

Problems solvable using both dynamic programming and greedy algorithms
exhibit the optimal substructure property.

Additionally, problems solving using greedy algorithms exhibit the greedy

choice property.

Optimal Substructure property.

Subproblems. Given a computational problem P with input I, a sub-
problem of Ps of P is any computational problem whose input Is ⊂ I and
whose desired output should satisfy the same properties as the output of P .

Example. Consider an instance P of the Making Change problem, asking
us for the best way to change 45 cents. A request to make change for any
sum that is smaller than 45 cents2, e.g., 36 cents, is a subproblem of P .

Problem decomposition. A problem is called decomposable if it can be
solved, by solving a number of its subproblems.

Optimal Substructure property. A problem is said to have an optimal

substructure property iff its optimal solution contains within it optimal

solutions to its subproblems.

Theorem 1. Problem Activity Selection has optimal substructure prop-

erty.

Proof. Consider an instance P of the Activity Selection problem with input
A[1..M][1..2]. Let set S = {j1, . . . jk} (k < M) be an optimal solution to
P . (Here, j1, . . . jk are indexes of the activities from A[][] that are being
scheduled.)

Consider some activity A[j] where j ∈ S. A[j] splits the list of all activities
A[] into three parts:

1. Aearly = {A[i] ∈ A[]|A[i][2] < A[j][1]}: activities that end before A[j]
starts.

2. Aconflict = {A[i] ∈ A[]| [A[i][1], A[i][2]) subseteq [A[][1], A[j][2]) 6= ∅:
activities that conflict with A[j].

2Our definition uses Is ⊂ I relation between the inputs of a problem and its subproblem.

In case of the Making Change problem, we can view input rendered in a unary alphabet

of bits. The set of bits needed to render 45 will be a superset to the set of bits needed to

render any smaller number of cents.

2

N

A[j]A
early

A
late

A
conflict

S
early

S
late

0

Figure 1: Optimal substructure for the Activity Selection Problem (Theorem
2).

3. Alate = {A[i] ∈ A[]|A[i][1] > A[j][2]}: activities that start after A[j]
ends.

Similarly, A[j] partitions the optimal solution S into three parts:

1. Searly = {i ∈ S|A[i][2] < A[j][1]}: activities that end before A[j]
starts.

2. {j}.

3. Slate = {i ∈ S|A[i][1] > A[j][2]}: activities that start after A[j] ends.

The structure of the problem is shown in Figure 1. The set S of optimally
scheduled activities is shown in bold. The partitions of A and S are circled
by dotted lines.

We claim that:

• Searly is the optimal solution for the Activity Selection problem with
input Aearly;

• Slate is the optimal solution for the Activity Selection problem with
input Alate;

We prove the first statement. The proof of the second is symmetric.

Suppose Searly is NOT an optimal solution for the Activity Selection prob-
lem with inbput Aearly. Consider then a set S′ = {f1, . . . , fl}, which is an
optimal solution for this problem. We know that val(S′) = |S′| > |Searly| =
val(Searly). But then, S cannot be an optimal solution for original problem,
because the following set

S∗ = S′ ∪ {j} ∪ Slate

is an optimal solution and val(S∗) < val(S).

Indeed, S∗ is a solution for the Activity Selection problem, because no A[i],
such that i ∈ S′ conflicts with A[j] or with any A[j′] where j′ ∈ Slate. And
because |S′| < |Searly|, |S∗| > |S|, and therefore |S| cannot be an optimal
solution, which contradicts our original assumption.

3

Greedy Choice Property

Greedy Choice property. An optimization problem has greedy choice

property if

• It has optimal substructure property.

• The optimal solution of a problem can be constructed from an optimal
solution to a subproblem by extending the solution of the subproblem
in a locally optimal way.

Locally optimal way. Consider a problem P with solution S. We want to
exted the solution of P to a superproblem P ′. Consider a list of alternatives
A1, . . . , Ak, such that S ∪ Ai is a feasible (albeit not necessarily optimal)
solution of P ′. Consider a local quality function q(Ai), which supplies for
each possible choice Ai a local goodness estimate.

A locally optimal way of selecting a solution for P ′ is a solution S ∪ Ai,
such that q(Ai) is optimal3.

Philosophy of Greedy Choice

The key feature of the greedy choice property is the fact that at each step we
add into our solution an element with the best local quality estimate. This
makes greedy algorithms very efficient, because only one selection needs
to be made per algorithm iteration, and that selection is never ”questioned”.

Greedy Choice Property Theorems

Theorem 2. Problem Activity Selection has greedy choice property.

Proof. Consider an instance of the Activity Selection problem with input
A[1..M][1..2]. Let At be a subproblem of this Activity Selection problem
containing only activities A[i] that start after time t.

Further, Let A[k] ∈ At be the activity with the earliest finishing time, i.e.,
A[k][2] = minA[k]∈At(A[j][2]). We will prove that A[k] is included in some
optimal solution for At.

Let St be an optimal solution for the Activity Selection problem for At.
Consider an element A[i] ∈ St with the earliest finish time. We consider two
cases:

• Case 1: A[i] = A[k], i.e., A[k] ∈ St.

• Case 2: i 6= k. Because A[k] ends earlier than A[i], it follows, that
A[i] 6∈ St. Consider now a set St

k = St − {A[i]} ∪ {A[k]}.

We claim that

(a) |St
k| = |S

t|. This is indeed so, as St
k is formed from St by replacing

one activity with another single activity.

3Minimal or maximal, depending on the nature of the problem.

4

a3

N0

a1

a2

Figure 2: Selection of shortest activity is not an optimal greedy strategy for
the Activity Selection problem.

(b) St
k is conflict-free. Indeed, St − {A[i]} contains no activities

that conflict with A[i] (as St is an optimal solution for At). But
A[k][2] < A[i][2] (i.e., A[k] will finish earlier than A[i]). Therefore,
no activity from St − {A[i]} can possibly conflict with A[k]. But
then, St

k contains no conflicts.

From these two statements we obtain that St
k is an optimal solution

for At.

Theorem 3. Problem Fractional Knapsack has greedy choice property.

(left as exercise)

Greedy Algorithm Design

Greedy algorithms can be designed for virtually any optimization problem.
They can be:

• optimal for problems that have optimal substructure property and greedy

choice property.

• approximations for problems that have only optimal substructure prop-

erty.

For some problems greedy algorithms give good approximations. For some
other problems, greedy algorithms can be really really bad (sometimes, can
lead to worst solutions).

Design. Given a problem, establish the following:

1. Proper objective function for the problem.

2. Optimal substructure property for the problem.

3. Proper quality function for evaluating solution steps (i.e., your greedy
approach).

4. Greedy choice property.

Note, that greedy choice property can only be established after you se-
lect your greedy strategy, as computational problems admit optimal greedy
algorithms for some greedy approaches, but not for others.

5

Example. Consider two greedy approaches to the Activity Selection prob-
lem.

• Select the activity that finishes the earliest.

– Theorem 2 shows that Activity Selection has greedy choice prop-
erty w.r.t. this strategy.

• Select the shortest activity.

– Figure 2 shows that Activity Selection with this strategy does not
have greedy choice property. There, the optimal solution is the
activity set {a1, a3}, while selecting the shortest activity will lead
to the solution {a2}, which is not optimal.

Greedy algorithm outline. Once you either:

• establish that an optimal greedy algorithm exists for a problem, or

• decide that a greedy approximation algorithm is good enough for you

you need to devise the algorithm itself.

Greedy algorithms can have the following components:

• Selection function. On each step, this function, given the currently
constructed part of the solution, and current choices for including into
the solution, will make the greedy choice.

• Feasibility function. On each step, this function indicates whether the
currently constructed part of the solution is feasible, i.e., can lead to
a solution.

• Pruning function. On each step, once the greedy choice is made, this
function will eliminate all possibilities that conflict with the current
portion of the solution.

• Objective function. This function evaluates the current solution or
partial solution and returns a numeric value for it.

• Solution function. This function evaluates current partial solution to
test if it is, in fact, a complete solution.

The overall organization of a greedy algorithm is:

Initialization Step: Set solution S ← ∅;
Solution Step: while S is feasible and S is NOT a solution do

Establish space of choices C;
Update solution: S ← S∪ Greedy Select(C);

endif

if S is NOT feasible return FAIL
else return S;

6

