
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Algorithms on Graphs: Part I

Graphs

Graphs. A graph is a pair G = 〈V,E〉, where

• V = {v1, . . . , vn} is a set of vertices, and

• E = {(vi, vj)} is the set of edges.

Directed and Undirected Graphs. In directed graphs edges have start

and end : if (v, v′) ∈ E is an edge in a directed graph G = 〈V,E〉, then v is
its start and w is its end, and the direction of (v, v′) is from v to v′.

In undirected graphs, edges do not have directions: (v, v′) = (w, v) for any
edge (v, v′) ∈ E.

Weighted Graphs. A vertex weighted graph is a graph G =〉V,E,w〈
where w : V −→ R. Here, w is the vertex weight function.

An edge weighted graph is a graph G =〉V,E,w〈, where w : E −→ R.
Here, w is the edge weight function.

Graph Representation

Graphs have two typical representations as data structures: adjacency ma-

trices and adjacency lists.

Adjacency matrix representation. A graph G = 〈V,E〉 where V =
{v1, . . . , vn} is represented as a two-dimensional array G[1..n, 1..n]. G[i, j] =
1 if (vi, vj) ∈ G. G[i, j] = 0 otherwise.

A vertex weighted graph G = 〈V,E,w〉 is represented as a two-dimensional
array G[1..N][0..N], where G[i]][0] = w(vi) and g[i][j] = 1 if (vi, vj) ∈ G and
G[i, j] = 0 otherwise for j > 0.

1

/

1 2

3 4

5

2

3

4

5

1 2 3 /

1 5

1 2

/

/

3

4

3 5 /

2 4

1 2 3 4 5

1 0 1 1 0 5
2 1 0 1 0 1
3 1 1 0 1 0
4 0 0 1 0 1
5 0 1 0 1 1

Figure 1: An undirected graph and its adjacency list and adjacency matrix
representations.

4

1 2

3 4

5

2

3

4

5

1 2 3

1

5 /

2

3 /

/

4 /

1 2 3 4 5

1 0 1 1 0 5
2 0 0 1 0 0
3 1 0 0 1 0
4 0 0 0 1 1
5 0 1 0 0 0

Figure 2: An undirected graph and its adjacency list and adjacency matrix
representations.

An edge weighted graph G = 〈V,E,w〉 is represented as a two-dimensional
array G[1..N][1..N], where g[i][j] = w(vi, vj).

Adjacency matrices for undirected graphs are symmetric.

Adjecency list representation. A graph G = 〈V,E〉 is represented as
and array Adj[1..n] of lists. Adj[vi] contains all vj , such that (vi, vj) ∈ E.
If G is vertex weighted, an additional array w[1..n] is used to store vertex
weights. If G is edge weighted, then Adj[vi] stores pairs (vj , w(vi, vj).

Figures 1 and 2 show the adjacency list and adjacency matrix representa-
tions of undirected and directed graphs (respectively).

Algorithms: Graph Traversal

Graph Traversal Problem. Given a graph G = 〈V,E〉 and a node s ∈ V

(refferred to as the source node, visit all nodes of the graph starting with
the source node.

Breadth-First Search

Breadth-First Search is a traversal technique which visits all yet unvis-
ited neighbors of a node v right after visiting v.

Node coloring. In the breadth-first search algorithm we use colors of
nodes as node labels to represent current state of a node (visited, enqueued,
unvisited). This is done for aesthetic reasons, numeric labels can be used
instead.

Data Structures. Breadth-first search algorithm (BFS algorithm) main-
tains a queue of vertices.

2

Algorithm BFS(V,Adj,s)
begin

foreach v ∈ V − {s} do //initialization

v.color ← WHITE; //color

v.d←∞; //distance from the source

v.π ←NIL; //"parent" (in the traversal)

endfor s.color ← GRAY;
s.d← 0;
s.π ← NIL;
Q← ∅; //initialization of the queue

Enqueue(Q);
//Main loop while Q 6= ∅ do

u← Dequeue(Q);
foreach v ∈ Adj[u] do

if v.color =WHITE then v.color ← GRAY;
v.d← u.d + 1;
v.π ← u;
Enqueue(Q, v);

endif
endfor
u.color ← BLACK;

endwhile
end

BFS: Analysis

Runnin time. T (BFS) = O(|V |+ |E|).

Notes: Initialization costs O(V). For each node v visited, its adjecency
list Adj[v] will be scanned once, leading to the overall O(

∑
v∈V |Adj[v]|) =

O(|E|).

Path. A path in a graph G = 〈V,E〉 is a sequence e1, e2, . . . ek of edges
ei = (vi, ui) ∈ E, such that u1 = v2, u2 = v3, . . . uk−1 = vk.

Shortest Path. A shortest path distance between two nodes s and v

in a graph G, denoted δ(s, v) is the minimum number k of edges on a path
from s to v.

A shortest path between s and v is any path whose length is equal to the
shortest path distance between s and v.

v is reachable from s if there exists at least one path in G from s to v.

Lemma 1. Let G = (V,E) be a graph, s ∈ V and (u, v) ∈ E. Then

δ(s, v) ≤ δ(s, u) + 1.

Proof. If u is reachable from s, then, of course v is reachable as well.

Case 1. u is on the shortest path from s to v. Then δ(s, v) = δ(s, u) + 1.

Case 2. u is NOT on the shortest path from s to v. Then δ(s, v) < δ(s, u)+1.

3

Lemma 2. For each node n ∈ V , in algorithm BSF v.d ≥ δ(s, d).

Proof. By induction.

Lemma 3. Consider some state of the queue Q = (u1, . . . , ur) in the BFS
algorithm. Then u1.d ≤ u2.d ≤ . . . ≤ ur.d.

Proof. Induction on the number of Enqueue operations.

Theorem 1. Let G = 〈V,E〉 be a graph and s ∈ V . Then:

1. Algorithm BFS discoveres all nodes in V reachable from s.

2. At the end of the algorithm, for each node v ∈ V , v.d = δ(s, d).

3. For each node v 6= s, one of the shortest paths from s to v goes through
the node v.π (and edge (v.π, v)).

Proof. By contradiction.

Depth-First Search

Depth-First Search traversal is a graph traversal technique that visits
the neighbors of most recently visited node on each step.

DFS node colors. The Depth-First search (DFS) algorithm colors nodes
as follows. Unvisited nodes are white; discovered nodes are gray and visited
nodes are black.

DFS timestamps. Each node v ∈ V receives two timestamps during the
DFS algorithm. The first timestamp, v.d, records the step on which v was
discovered (became gray). The second timestamp, v.f records the step on
which v was visited (became black).

Algorithm DFS(V,Adj)
begin

foreach v ∈ V do //initialization

v.color ← WHITE; //vertex color: unvisited

v.π ←NIL; //"parent" (in the traversal)

endfor time← 0 //behaves as global variable

//Main loop

foreach v ∈ V do
if v.color = WHITE then DFS VISIT(V,Adj,v);

endfor
end

4

Algorithm DFS VISIT(V,Adj,u)
begin

time← time + 1;
u.d← time;
u.color ← GRAY; //mark vertex as discovered

foreach v ∈ Adj[u] do //visit neighbors

if v.color =WHITE then
v.π ←u;
DFS VISIT(V,Adj,v);

endif
endfor u.color ← BLACK; //mark vertex as visited

time← time + 1;
u.f ← time;

end

DFS: Analysis

Running time. T (DFS) = Θ(|V |+ |E|).

Note. Initialization takes Θ(|V |) steps. On each call of DFS VISIT, with
node v as input, at most |Adj[v]| of recursive calls will be made.So, the total
number of recursive calls of DFS VISIT is θ(|E|)

Predecssor subgraph. Given a graph G, its predecessor subgraph Gπ =
〈V,Eπ〉 contains only the edges (v.π, v) for each v ∈ V .

Predecessor subgraph in DFS. A forest of trees.

Parenthesis theorem. In any DFS order of the traversal of a graph G =
〈V,E〉, for any two nodes u, v ∈ V , one of the following three conditions
holds:

1. [u.d, u.f] ⊂ [v.d, v.f]; u is a descendant of v.

2. [v.d, v.f] ⊂ [u.d, u.f]; v is a descendant of u.

3. [u.d, u.f] ∩ [v.d, v.f] = ∅; u, v are not in ancestor-descendant relation-
ship.

Proof. Consider two cases: u.d < v.d and u.d > v.d. For each subcase,
establish two possible outcomes.

White-path Theorem. In a depth-first forest of a graph G = 〈V,E〉,
vertex v is a descendant of vertex u iff at the time u.d, there is a path from
u to v which only encounters white nodes.

Proof. Prove in both directions. For the ⇒ direction, the white path is
constructed. For the ⇐ direction, prove by contradiction.

5

Classification of edges. DFS algorithm splits edges in G into the follow-
ing categories:

• Tree edges. Edges in the Gπ depth-first forest of G.

• Back edges. Edges (u, v), where u is a descendant of v.

• Forward edges. Edges (u, v) not in Gπ, where v is a descendant of
u.

• Cross edges. All other edges.

Algorithms: Topological Sort on DAGs

Directed Acyclic Graphs (DAGs). A directed graph G = 〈V,E〉 is
acyclic if for any node v ∈ V , there is no path from v back to v.

Note, DAGs do not have back edges.

Topological Sort Problem. Given a directed acyclic graph G = 〈V,E〉
a topoliogical sort of G is a linear order < on the vertices from V , such
that:

if there is an edge (u, v) ∈ E, then u < v.

The problem is to find a(ny) topological sort given a DAG G = 〈V,E〉

Algorithm. The algorithm for topological sort uses DFS:

run DFS(G), compute all v.f

sort V in ascending order by v.f

return sorted list of nodes

Minimal Spanning Trees

Spanning Tree. Let G = 〈V,E,w〉 be a (connected) edge-weighted undi-
rected graph. A spanning tree of G is a subset T ⊆ E of edges, such that
GT = 〈V, T 〉 is connected and acyclic.

The weight of a spanning tree: w(T) =
∑

(u,v,)∈T w(u, v).

Minimal Spanning Tree Problem. Given an undirected edge-weighted
graph, find a spanning tree with minimum weight.

Greedy approach. (if we can make it work).

6

Algorithm GENERIC MST(V,Adj,w)
begin

A← ∅;
while A is not a spanning tree do
find a safe edge(u, v) ∈ E to include in A

A = A ∪ {(u, v}
endwhile
return A;

end

How to find a safe edge?

Cuts. A cut S, V − S in an undirected graph G = 〈V,E〉 is a partition of
V into two sets.

An edge (u, v) crosses the cut if u ∈ S and v ∈ V − S or vice versa.

A cut respects a set A of edges is no edge in A crosses the cut.

An edge (u, v) is a light edge crossing the cut is its weight is the minimum
among all edges crossing the cut.

Theorem 3. Let G = 〈E,V,w〉 be a connected undirected edge-weighted
graph. Let A ⊂ E be in some minimal spanning tree. and let (S, V − S) be
some cut of G.

If (S, V − S) respects A and (u, v) is a light edge crossing A, then (u, v)
is safe for A.

7

