Cal Poly	CSC 349: Design and Analyis of Algorithms	Alexander Dekhtyar

Algorithms on Graphs: Part I

Graphs

Graphs. A graph is a pair $G=\langle V, E\rangle$, where

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of vertices, and
- $E=\left\{\left(v_{i}, v_{j}\right)\right\}$ is the set of edges.

Directed and Undirected Graphs. In directed graphs edges have start and end: if $\left(v, v^{\prime}\right) \in E$ is an edge in a directed graph $G=\langle V, E\rangle$, then v is its start and w is its end, and the direction of $\left(v, v^{\prime}\right)$ is from v to v^{\prime}.
In undirected graphs, edges do not have directions: $\left(v, v^{\prime}\right)=(w, v)$ for any edge $\left(v, v^{\prime}\right) \in E$.

Weighted Graphs. A vertex weighted graph is a graph $G=\rangle V, E, w\langle$ where $w: V \longrightarrow \mathcal{R}$. Here, w is the vertex weight function.

An edge weighted graph is a graph $G=\rangle V, E, w\langle$, where $w: E \longrightarrow \mathcal{R}$. Here, w is the edge weight function.

Graph Representation

Graphs have two typical representations as data structures: adjacency matrices and adjacency lists.

Adjacency matrix representation. A graph $G=\langle V, E\rangle$ where $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is represented as a two-dimensional array $G[1 . . n, 1 . . n] . G[i, j]=$ 1 if $\left(v_{i}, v_{j}\right) \in G . G[i, j]=0$ otherwise.

A vertex weighted graph $G=\langle V, E, w\rangle$ is represented as a two-dimensional array $G[1 . . N][0 . . N]$, where $G[i]][0]=w\left(v_{i}\right)$ and $g[i][j]=1$ if $\left(v_{i}, v_{j}\right) \in G$ and $G[i, j]=0$ otherwise for $j>0$.

	1	2	3	4	5
1	0	1	1	0	5
2	1	0	1	0	1
3	1	1	0	1	0
4	0	0	1	0	1
5	0	1	0	1	1

Figure 1: An undirected graph and its adjacency list and adjacency matrix representations.

Figure 2: An undirected graph and its adjacency list and adjacency matrix representations.

An edge weighted graph $G=\langle V, E, w\rangle$ is represented as a two-dimensional array $G[1 . . N][1 . . N]$, where $g[i][j]=w\left(v_{i}, v_{j}\right)$.

Adjacency matrices for undirected graphs are symmetric.

Adjecency list representation. A graph $G=\langle V, E\rangle$ is represented as and array $\operatorname{Adj}[1 . . n]$ of lists. $A d j\left[v_{i}\right]$ contains all v_{j}, such that $\left(v_{i}, v_{j}\right) \in E$. If G is vertex weighted, an additional array $w[1 . . n]$ is used to store vertex weights. If G is edge weighted, then $\operatorname{Adj}\left[v_{i}\right]$ stores pairs $\left(v_{j}, w\left(v_{i}, v_{j}\right)\right.$.

Figures 1 and 2 show the adjacency list and adjacency matrix representations of undirected and directed graphs (respectively).

Algorithms: Graph Traversal

Graph Traversal Problem. Given a graph $G=\langle V, E\rangle$ and a node $s \in V$ (refferred to as the source node, visit all nodes of the graph starting with the source node.

Breadth-First Search

Breadth-First Search is a traversal technique which visits all yet unvisited neighbors of a node v right after visiting v.

Node coloring. In the breadth-first search algorithm we use colors of nodes as node labels to represent current state of a node (visited, enqueued, unvisited). This is done for aesthetic reasons, numeric labels can be used instead.

Data Structures. Breadth-first search algorithm (BFS algorithm) maintains a queue of vertices.

```
Algorithm BFS(V,Adj,s)
begin
    foreach \(v \in V-\{s\}\) do //initialization
        \(v . c o l o r ~ \leftarrow\) WHITE; //color
        \(v . d \leftarrow \infty ; \quad / / d i s t a n c e ~ f r o m ~ t h e ~ s o u r c e ~\)
        \(v . \pi \leftarrow \mathrm{NIL} ; \quad / / " p a r e n t "\) (in the traversal)
    endfor \(\quad\) s.color \(\leftarrow\) GRAY;
    \(s . d \leftarrow 0\);
    \(s . \pi \leftarrow\) NIL;
    \(Q \leftarrow \emptyset ; \quad / / i n i t i a l i z a t i o n ~ o f ~ t h e ~ q u e u e ~\)
    Enqueue \((Q)\);
                //Main loop while \(Q \neq \emptyset\) do
        \(u \leftarrow\) Dequeue \((Q)\);
        foreach \(v \in \operatorname{Adj}[u]\) do
            if \(v\).color \(=\) WHITE then \(\quad\) v.color \(\leftarrow\) GRAY;
                \(v . d \leftarrow u . d+1 ;\)
            \(v . \pi \leftarrow u\);
            Enqueue \((Q, v)\);
        endif
    endfor
    u.color \(\leftarrow\) BLACK;
    endwhile
end
```


BFS: Analysis

Runnin time. $\quad T(B F S)=O(|V|+|E|)$.
Notes: Initialization costs $O(V)$. For each node v visited, its adjecency list $\operatorname{Adj}[v]$ will be scanned once, leading to the overall $O\left(\sum_{v \in V}|\operatorname{Adj}[v]|\right)=$ $O(|E|)$.

Path. A path in a graph $G=\langle V, E\rangle$ is a sequence $e_{1}, e_{2}, \ldots e_{k}$ of edges $e_{i}=\left(v_{i}, u_{i}\right) \in E$, such that $u_{1}=v_{2}, u_{2}=v_{3}, \ldots u_{k-1}=v_{k}$.

Shortest Path. A shortest path distance between two nodes s and v in a graph G, denoted $\delta(s, v)$ is the minimum number k of edges on a path from s to v.

A shortest path between s and v is any path whose length is equal to the shortest path distance between s and v.
v is reachable from s if there exists at least one path in G from s to v.

Lemma 1. Let $G=(V, E)$ be a graph, $s \in V$ and $(u, v) \in E$. Then

$$
\delta(s, v) \leq \delta(s, u)+1
$$

Proof. If u is reachable from s, then, of course v is reachable as well.
Case 1. u is on the shortest path from s to v. Then $\delta(s, v)=\delta(s, u)+1$.
Case 2. u is NOT on the shortest path from s to v. Then $\delta(s, v)<\delta(s, u)+1$.

Lemma 2. For each node $n \in V$, in algorithm BSF v. $d \geq \delta(s, d)$.

Proof. By induction.

Lemma 3. Consider some state of the queue $Q=\left(u_{1}, \ldots, u_{r}\right)$ in the BFS algorithm. Then $u_{1} . d \leq u_{2} . d \leq \ldots \leq u_{r} . d$.

Proof. Induction on the number of Enqueue operations.

Theorem 1. Let $G=\langle V, E\rangle$ be a graph and $s \in V$. Then:

1. Algorithm BFS discoveres all nodes in V reachable from s.
2. At the end of the algorithm, for each node $v \in V, v \cdot d=\delta(s, d)$.
3. For each node $v \neq s$, one of the shortest paths from s to v goes through the node $v . \pi$ (and edge $(v . \pi, v)$).

Proof. By contradiction.

Depth-First Search

Depth-First Search traversal is a graph traversal technique that visits the neighbors of most recently visited node on each step.

DFS node colors. The Depth-First search (DFS) algorithm colors nodes as follows. Unvisited nodes are white; discovered nodes are gray and visited nodes are black.

DFS timestamps. Each node $v \in V$ receives two timestamps during the DFS algorithm. The first timestamp, v.d, records the step on which v was discovered (became gray). The second timestamp, v.f records the step on which v was visited (became black).

```
AlGORITHM DFS(V,Adj)
begin
    foreach v\inV do //initialization
        v.color }\leftarrow\mathrm{ WHITE; //vertex color: unvisited
        v.\pi\leftarrowNIL; //"parent" (in the traversal)
    endfor time \leftarrow0 //behaves as global variable
//Main loop
    foreach }v\inV\mathrm{ do
        if v.color = WHITE then DFS_VISIT(V,Adj,v);
    endfor
end
```

```
Algorithm DFS_VISIT(V,Adj,u)
begin
    time \(\leftarrow\) time \(+1 ;\)
    \(u . d \leftarrow\) time;
    u.color \(\leftarrow\) GRAY; //mark vertex as discovered
    foreach \(v \in \operatorname{Adj}[u]\) do //visit neighbors
        if \(v\). color \(=\) WHITE then
            \(v . \pi \leftarrow \mathrm{u}\);
            DFS_VISIT(V,Adj,v);
        endif
    endfor \(\quad\) u.color \(\leftarrow\) BLACK; //mark vertex as visited
    time \(\leftarrow\) time +1 ;
    \(u . f \leftarrow\) time;
end
```


DFS: Analysis

Running time. $\quad T(D F S)=\Theta(|V|+|E|)$.
Note. Initialization takes $\Theta(|V|)$ steps. On each call of DFS_VISIT, with node v as input, at most $|A d j[v]|$ of recursive calls will be made.So, the total number of recursive calls of DFS_VISIT is $\theta(|E|)$

Predecssor subgraph. Given a graph G, its predecessor subgraph $G_{\pi}=$ $\left\langle V, E_{\pi}\right\rangle$ contains only the edges $(v . \pi, v)$ for each $v \in V$.

Predecessor subgraph in DFS. A forest of trees.

Parenthesis theorem. In any DFS order of the traversal of a graph $G=$ $\langle V, E\rangle$, for any two nodes $u, v \in V$, one of the following three conditions holds:

1. $[u . d, u . f] \subset[v . d, v . f] ; u$ is a descendant of v.
2. $[v . d, v . f] \subset[u . d, u . f] ; v$ is a descendant of u.
3. $[u . d, u . f] \cap[v . d, v . f]=\emptyset ; u, v$ are not in ancestor-descendant relationship.

Proof. Consider two cases: u.d $<v . d$ and $u . d>v . d$. For each subcase, establish two possible outcomes.

White-path Theorem. In a depth-first forest of a graph $G=\langle V, E\rangle$, vertex v is a descendant of vertex u iff at the time $u . d$, there is a path from u to v which only encounters white nodes.

Proof. Prove in both directions. For the \Rightarrow direction, the white path is constructed. For the \Leftarrow direction, prove by contradiction.

Classification of edges. DFS algorithm splits edges in G into the following categories:

- Tree edges. Edges in the G_{π} depth-first forest of G.
- Back edges. Edges (u, v), where u is a descendant of v.
- Forward edges. Edges (u, v) not in G_{π}, where v is a descendant of u.
- Cross edges. All other edges.

Algorithms: Topological Sort on DAGs

Directed Acyclic Graphs (DAGs). A directed graph $G=\langle V, E\rangle$ is acyclic if for any node $v \in V$, there is no path from v back to v.

Note, DAGs do not have back edges.

Topological Sort Problem. Given a directed acyclic graph $G=\langle V, E\rangle$ a topoliogical sort of G is a linear order $<$ on the vertices from V, such that:
if there is an edge $(u, v) \in E$, then $u<v$.
The problem is to find a(ny) topological sort given a DAG $G=\langle V, E\rangle$

Algorithm. The algorithm for topological sort uses DFS:
run DFS(G), compute all $v . f$
sort V in ascending order by $v . f$
return sorted list of nodes

Minimal Spanning Trees

Spanning Tree. Let $G=\langle V, E, w\rangle$ be a (connected) edge-weighted undirected graph. A spanning tree of G is a subset $T \subseteq E$ of edges, such that $G_{T}=\langle V, T\rangle$ is connected and acyclic.

The weight of a spanning tree: $w(T)=\sum_{(u, v,) \in T} w(u, v)$.

Minimal Spanning Tree Problem. Given an undirected edge-weighted graph, find a spanning tree with minimum weight.

Greedy approach. (if we can make it work).

```
AlGORITHM GENERIC_MST(V,Adj,w)
begin
    A\leftarrow\emptyset;
    while }A\mathrm{ is not a spanning tree do
        find a safe edge (u,v)\inE to include in A
        A=A\cup{(u,v}
    endwhile
    return A;
end
```

How to find a safe edge?

Cuts. A cut $S, V-S$ in an undirected graph $G=\langle V, E\rangle$ is a partition of V into two sets.

An edge (u, v) crosses the cut if $u \in S$ and $v \in V-S$ or vice versa.
A cut respects a set A of edges is no edge in A crosses the cut.
An edge (u, v) is a light edge crossing the cut is its weight is the minimum among all edges crossing the cut.

Theorem 3. Let $G=\langle E, V, w\rangle$ be a connected undirected edge-weighted graph. Let $A \subset E$ be in some minimal spanning tree. and let $(S, V-S)$ be some cut of G.

If $(S, V-S)$ respects A and (u, v) is a light edge crossing A, then (u, v) is safe for A.

