NP-Complete Problems

Complexity Class P

Abstract Problems. An abstract problem \(Q \) is a binary relation on sets \(I \) of input instances and \(S \) of problem solutions.

\(Q(i, s) \), means that \(s \) is a solution for the abstract problem \(Q \) given input \(i \).

Decision problems. An abstract problem \(Q \) is a decision problem if \(S = \{0, 1\} \) (or \(\{\text{false, true}\} \)).

Decision problems determine whether something is possible for a given input.

Example. The following are all decision problems:

- Given a directed graph and two nodes \(x \) and \(y \) in it, is there a path from \(x \) to \(y \)?
- Given an array of numbers \(A \) and a number \(x \), is it true that \(x \) is the smallest number in \(A \)?
- Is a given undirected graph \(G \) connected?
- Given two strings \(s_1 \) and \(s_2 \), is there an alignment for them with an edit distance of no more than a given number \(k \)?

Encodings. Let \(S \) be a set of abstract objects. An encoding of \(S \) is a mapping from elements of \(S \) onto a set of binary strings.
Example. Some examples of encodings:

- The set \{false, true\} can be encoded as \{0, 1\}.
- The set \(\mathcal{N}\) of natural numbers can be encoded as \{0, 1, 10, 11, 100, 101, \ldots\}.
- A graph \(G = \{V, E\}\) can be encoded as a concatenation of two strings \(e(V)\) of length \(\log_2(|V|)\) and \(e(E)\) of length \(|V|^2\).

 \(e(V)\) is a binary encoding of the natural number \(|V|\).

 \(e(E)\) is a concatenation of \(|V|\) bitmaps \(e(v_i)\). \(e(v_i)\) has a 1 in position \(j\), if \((v_i, v_j) \in E\) and 0 in position \(j\) otherwise.

Concrete problems. A concrete problem is a problem whose input and output sets are binary strings.

Computational complexity of concrete problems. A concrete problem is solvable in time \(O(T(n))\) iff when there exists an algorithm which, when provided an instance \(i\) of the problem of size \(|i| = n\), solves the problem instance in time \(O(T(n))\).

Polynomial complexity. A concrete problem is polynomially solvable iff it is solvable in \(O(n^k)\) time for some constant \(k\).

Complexity of abstract problems. A function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^*\) is polynomial-time computable iff there exists an algorithm \(A\) which given an input binary string \(i\) produces \(f(i)\) in \(O(n^k)\) time.

Two encodings \(e_1\) and \(e_2\) are polynomially related if there are polynomially computable functions \(f_{12}\) and \(f_{21}\) such that

\[
f_{12}(e_1(i)) = e_2(i)
\]

and

\[
f_{21}(e_2(i)) = e_1(i).
\]

Formal language framework. A an alphabet \(\Sigma\) is a finite set \(\Sigma = \{s_1, \ldots, s_m\}\) of symbols. A string \(S \in \Sigma^*\) is a sequence \(x_1x_2 \ldots x_n\) of symbols, such that \(x_i \in \Sigma\).

A formal language in alphabet \(\Sigma\) is a set \(L = \{l_1 \ldots\}\) of strings from alphabet \(\Sigma\).

An algorithm \(A\) accepts a string \(x \in \{0, 1\}^*\) iff, given \(x\) as input, it outputs 1, i.e., if \(A(x) = 1\). An algorithm \(A\) accepts a language \(L\) iff \(A(x) = 1\) for each \(x \in L\).

An algorithm \(A\) decides a language \(L\) iff:

- \(A(x) = 1\) for each \(x \in L\);
- \(A(x) = 0\) for each \(x \not\in L\).

An algorithm \(A\) accepts \(L\) in polynomial time iff

- \(A\) accepts \(L\).
• There exists a constant k, such that on any string $x \in L$, $|x| = n$, A accepts x in time $O(n^k)$.

An algorithm A decides L in polynomial time iff

• A decides L.

• There exists a constant k, such that on any string $x \in \{0, 1\}^*$, $|x| = n$, A decides x in time $O(n^k)$.

Complexity class. A **complexity class** is a set of languages membership in which is determined by a **complexity measure** of an algorithm deciding the language.

Complexity class P. Complexity class P is defined as

$$P = \{L \subseteq \{0, 1\}^* | \text{there exists an algorithm } A \text{ that decides } L \text{ in polynomial time}\}.$$

Theorem. $P = \{L | L \text{ is accepted in polynomial time}\}$.

Complexity Class NP

Verification. A **verification algorithm** A for is an algorithm that takes as input two strings, x and y (usually called a certificate) and produces as output a $\{0, 1\}$ decision.

A verifies x iff there exists a certificate y, such that $A(x, y) = 1$.

A language L is verified by A is defined as

$$L = \{x \in \{0, 1\}^* | \text{there exists } y \in \{0, 1\}^* \text{ such that } A(x, y) = 1\}.$$

Complexity class NP. The **complexity class NP** is the class of languages that can be verified by a polynomial algorithm. More formally, a language L belongs to class NP iff there exist an two-input polynomial algorithm A and a constant c such that

$$L = \{x \in \{0, 1\}^* | \text{there exists } y \in \{0, 1\}^* \text{ s.t. } |y| \leq O(|x|^c) \text{ and } A(x, y) = 1\}.$$

Complexity class co–NP. The complexity class **co–NP** is defined as $=\{L|\bar{L} \in NP\}$.

NP-Completeness

Some problems are harder than others. **NP-Complete** problems are the problems in class NP that are as hard to solve as any other problem in that class.

This notion can be formalized.
Reducability. A language L_1 is **polynomial-time reducible** to language L_2, denoted $L_1 \leq_p L_2$ iff, there exists a polynomial-time computable function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ such that for all $x \in \{0,1\}^*$:

$$x \in L_1 \iff f(x) \in L_2.$$

f is called the reduction function.

NP-Completeness. A language $L \subset \{0,1\}^*$ is **NP-complete** iff

- $L \in \text{NP}$
- $L' \leq_p L$, for every $L \in \text{NP}$.

NP-hardness. A language $L \subset \{0,1\}^*$ is **NP-complete** iff

- $L' \leq_p L$, for every $L \in \text{NP}$.

Big Questions

Are there NP-complete problems? Yes, there are!

What is the relationship between P and NP? We observe:

Theorem. $P \subseteq \text{NP}$.

This is so, because a polynomial algorithm that **actually solves** the problem, will also **verify** the solution.

Theorem. If any NP-complete problem is polynomial-time solvable, then $P = \text{NP}$.

If any NP-complete problem is NOT polynomial-time solvable, then $P \subset \text{NP}$.

The biggest unsolved mystery in Computer Science. Is $P = \text{NP}$?

Note. This problem actually has many important practical implications. E.g., if $P = \text{NP}$, then a lot of encryption algorithms are obviated and rendered ineffective in protecting information. That is, a lot of current practical work relies on NP-complete problems being hard to solve.

NP-complete Problems: Examples

Hamiltonian Cycle. Given a graph $G = \{V,E\}$, a **hamiltonian cycle** of G is a path p that starts and ends with the same node (a cycle) and visits every other node exactly once.

Satisfiability. Given a propositional boolean formula consisting of propositional variables, and connectives \land, \lor, \neg, is there an assignment of truth values to the propositional variables that make the formula true?
3-CNF satisfiability. Given a collection disjunctions D_1, \ldots, D_k of the form $l_1 \lor l_2 \lor l_3$ where l_1 is either some propositional variable x or its negation $\neg x$, determine if $C = D_1 \land D_2 \land \ldots \land D_k$ is satisfiable.

Longest simple path. Given an edge-weighted graph $G = (V, E, w)$ find the longest simple path in G.

Clique. Given an undirected graph $G = (V, E)$, a clique is a subset $V' \subseteq V$ of vertices, such that there is an edge between each pair. $|V'|$ is the size of the clique. A decision problem is, given a graph G and an integer k determine if G has a clique of size k.