Overview of the Course
Databases and DBMS in a nutshell

Data

Views of data:

- **conceptual**: captures relationships in the data. (CPE 366)
- **logical**: captures the format of the data as understood by DBMS. (CPE 365)
- **physical**: represents the exact way the data is stored and accessed by DBMS. (CPE 468)

Logical View of data

Data models

- **historical**
 - *network*
 - *hierarchical*

- **modern**
 - *relational*
 - *object-oriented*
 - *object-relational*

- **emerging**
 - *semistructured* (XML)
Steps of Database Design

Step 1: Requirements analysis. Collect information from customer about

- data;
- desired features of the database;
- information needs.

Step 2: Conceptual Database Design. Develop high-level description of data, describe constraints.

- High-level design: often done using Entity-Relationship diagrams (E-R diagrams).

Step 3: Logical Database Design. Select a DBMS, convert high-level design into (relational) database design (database schema) in Data Definition Language (DDL) of the DBMS.

- DDL for relational databases is a part of SQL.

Steps 1–3 are main steps in database design. Thee more steps, enhance the Logical design.

Step 4: Schema Refinement. Logical database design is analyzed and (potentially) improved.

- Goal of schema refinement: have database schema in one of normal forms.

Step 5: Physical Database Design. Tailor the database schema to expected workloads (queries, information needs).

- Choose indexes.
- Tune database design.

Step 6: Security Design. Identify user groups, information (parts of the database) to be made available to different user groups. Represent security information in DDL.

- SQL has some mechanisms to maintain security of the data.
Querying Databases

For relational databases, the main query language is

\[\text{SQL} = \text{Structured Query Language}. \]

SQL consists of the following:

- **SQL DDL** - data definition language: define/manipulate *relational schemas*.
- **SQL QL** - query language: request information from the database.
- **SQL/PL** - programming language: create complex sequences of instructions for DBMS to execute.

History of SQL:

- **SQL'77** — first standard, many DBMS used their version of SQL even after it.
- **SQL-92** — first *real* standard. We will mostly study SQL-92.
- **SQL:1999** — new standard. Includes new features for different types of databases, expands to cover object-relational databases.

DBMS

The purpose of DBMS:

- **Allow users to describe** data format (*database schema*).
- **Store** very large amounts of data.
- **Answer** to user information needs (*queries*).
- **Control** access to data from multiple users.

DBMS organization in a nutshell

- **Query Parser**: parses the incoming SQL statement.
- **Query Compiler**: recognizes the query, finds the best way to execute it.
 - **Query Translator**
 - **Logical Plan Generator**
 - **Physical Plan Generator**
- **Query operations**: used in query plans, execute queries.
• **Buffer Manager**: efficiently handles disk I/O.

• **Transaction Manager**: schedules data accesses for different users.

• **Recovery Manager**: ensures that database state can be recovered after severe crashes.

In This Course

• We study **relational data model**.

• We learn **SQL** (including SQL/PL).

• We use **Oracle version 10g** DBMS.

• We use Oracle’s **sqlplus** client to access databases interactively or in a batch mode.

• We use **JDBC** (Java Database Connectivity) API to build database applications programs in Java.