
. .

Fall 2007 CPE/CSC 365: Introduction to Database Systems Alexander Dekhtyar
. .

SQL: Structured Query Language

Nested Queries

One of the most important features of SQL is that SQL SELECT statements
can be nested within each other to produce complex queries. While some of the
queries discussed below can be written without nesting, some queries require
nested structure.

Return Types

In general, a SELECT statement returns a relational table as a result. However,
there are situations, where the returned table can be cast to a more simple
structure. In general, the following four cases are possible. We note, that in all

four cases, it is always possible to treat the returned result as a relational table.

Consider, for example, the following table:

Univerersity(Id INT, NAME CHAR(60), City CHAR(15), State CHAR(2),

NumStudents INT)

The return type of a SELECT statement may be:

1. An atomic value. Returned when a single column of a relation is re-
quested in the SELECT clause, and the information requested is unique in
the table (e.g., a key value). For example, the following query

SELECT Id FROM University

WHERE Name = ’University of Montana’;

returns a single number: the Id attribute for the University of Montana
record.

2. A single tuple. Returned when the SELECT clause contains multiple
attributes, but the information requested is unique in the table. For ex-
ample, consider the following query:

SELECT * FROM University

WHERE Id = 10;

This query returns a single tuple, whose value for the primary key attribute
is 10.

1

3. A single column. Returned when a single attribute is listed in the
SELECT clause, and when the result contains more than one entry. This
can be viewed as a set of atomic values. For example, the query below,
returns the list of IDs for all universities in California.

SELECT Id FROM University

WHERE State =’CA’;

4. A relational table. This is the most general return type, used when the
SELECT clause contains multiple columns, and the result of the query is
multiple tuples. This return type can be viewed as a set of tuples. The
following query returns as its result the list of all California campuses and
their corresponding enrollments:

SELECT Name, NumStudents FROM University

WHERE State = ’CA’;

Note: For some queries, the return type can be established statically, by
analyzing constraints on the relational table. For some other queries, the actual
return type of the query run on some instances can be different than the stati-
cally predicted return type (e.g., the last query will return a single tuple if only
one record about a California university exists in the table).

Nested Queries in the FROM clause

Since the return of any SELECT statement can be viewed as a relational table,
a nested SELECT statement can be used in the FROM clause. This allows to
construct a temporary table which is useful for the purposes of the query, but
does not need to be made persistent. Any attribute of the table resulting from
the nested SELECT statement can be accessed from within the WHERE , GROUP
BY, HAVING and SELECT clauses of the main query, just like attributes of regular
relational tables.

Syntax:

SELECT <select-list>

FROM (SELECT query) <Alias>, ...

[WHERE <cond>]

[GROUP BY <Attlist>

[HAVING <cond>]]

Two rules must be followed:

• The nested SELECT statement must be enclosed in partentheses.

• The result of the nested SELECT statement must be given a table alias
and all aggregate/expression attributes in the result of the nested SELECT
statement that are to be referenced in the outer query must be given
column aliases.

2

Example. Consider the following tables (of university courses, students and
student enrollments in courses):

Course(Major, Num, Name, Room, Instructor, Capacity)

Student(SSN, FirstName, LastName, Major, Year)

Enrollments(CourseMajor, CourseNum,StudentId)

Consider the following query.

SELECT C.Major, C.Num, Room

FROM Course C, (SELECT E.CourseMajor, E.CourseNum, COUNT(*) AS Enrolled

FROM Student S, Enrollments E

WHERE S.Year > 3 AND E.StudentId = S.SSN

GROUP BY E.CourseMajor, E.CourseNum) S

WHERE C.Major = S.CourseMajor AND C.Num = S.CourseNumber AND

S.Enrolled >= Capacity/2;

The nested query:

SELECT E.CourseMajor, E.CourseNum, COUNT(*) AS Enrolled

FROM Student S, Enrollments E

WHERE S.Year > 3 AND E.StudentId = S.SSN

GROUP BY E.CourseMajor, E.CourseNum

Finds all seniors (Year>3) and joins their information with the information
about the courses they are taking. This information is then grouped by course
id/number, resulting in the relation that reports a list of courses and the number
of senior students enrolled in each 1.

This information is reported back as a three-attribute relation with alias S to
the main query, which, in turn, finds and reports the courses and the rooms of
the courses, in which senior students occupy more than one half of the designated
capacity.

The same query can be rewritten as

SELECT C.Major, C.Num, Room

FROM Course C, Student S, Enrollments E

WHERE S.Year > 3 AND E.StudentId = S.SSN AND

C.Major = E.CourseMajor AND C.Num = E.CourseNumber

GROUP BY C.Major, E.CNum, Capacity

HAVING COUNT(*) >= Capacity/2;

Note, that in this query, Capacity has to be included in the GROUP BY clause,
to allow for its use in the HAVING clause.

Nested Queries in the WHERE Clause

Nested queries that return atomic values

A SELECT statement that returns a single value can be used in any expression
in the WHERE clause where the value of this type is expected.

This, in particular, can be used to write joins in nested form.

1For courses that have at least one senior student enrolled

3

Example Consider the following tables (a list of bank accounts and a list
of transactions for the account: each transaction either adds money (After >

Before) or removes money (After < Before):

Accounts(AcctNo, Owner, Type, DateOpened, Balance)

Transactions(AcctNo, TDate, TType, Before, After)

Let us also assume that we have a UNIQUE(Owner, Type) constraint on Accounts.
We can write the query that finds all dates on which John Smith added money
to his savings account as follows:

SELECT TDate

FROM Transactions T

WHERE T.Before < T.After AND

AcctNo = (SELECT AcctNo FROM Accounts A

WHERE A.Owner = ’John Smith’ AND A.Type = ’Savings’);

Return Value Allowed comparisons

numeric <, >, <=, >=, ! =, <>, =
strings =, ! =, <>, LIKE
other =, ! =, <>

Nested queries that return single tuples

SQL has a tuple (list) construct: (<Att>, <Att>,...,<Att>). When a SE-
LECT statement returns a single tuple, tuples formed using this construct can
be compared to the returned tuple.

Example Consider the following tables:

People(Id, FirstName, LastName, Age, Gender) Interests(FName, LName,

Interest)

The following query returns all interests of the person who has the id number
1 in the People table.

SELECT i.Interest

FROM Interests i

WHERE (i.Fname, i.LName) = (SELECT FirstName, LastName

FROM People

WHERE id = 1);

Return Value Allowed comparisons

tuple (list) =, ! =, <>

Nested queries that return single columns

When a SELECT statement returns a single column as a result, the result can
be treated as a set of atomic values. SQL allows for a number of comparison
operations between atomic values and sets:

4

Operation Explanation

EXISTS <SubQuery> true if <SubQuery> returns a non-empty table
<AtomicValue> IN <SubQuery> true if <AtomicValue> is one of the elements

in the result of <SubQuery>
<AtomicValue> <Op> ALL (<SubQuery>) <Op>∈ {>, <, >=, <=, =, ! =, <>}. universal comparison
<AtomicValue> <Op> ANY (<SubQuery>) <Op>∈ {>, <, >=, <=, =, ! =, <>}. existential comparison

A universal comparison operation evaluates to true iff <AtomicValue> is in
the required relationship (<Op>) with every member of the set returned by
<Expression>.

An existential comparison operation evaluates to true iff <AtomicValue> is in
the required relationship (<Op>) with at least one member of the set returned
by <Expression>.

Examples. Consider the relational tables Accounts and Transactions de-
fined above:

Accounts(AcctNo, Owner, Type, DateOpened, Balance)

Transactions(AcctNo, TDate, TType, Before, After)

The following query finds the account information for all accounts that had
at least one $1000 deposit.

SELECT A.AcctNo, A.Owner, A.Type

FROM Accounts A

WHERE A.AcctNo IN (SELECT DISTINCT AcctNo FROM Transactions

WHERE After - Before = 1000 and TType=’deposit’);

This query finds the information about all accounts with the maximum bal-
ance.

SELECT A.AcctNo, A.Owner, A.Balance

FROM Accounts

WHERE Balance >= ALL (SELECT Balance FROM Accounts);

Correlated Queries

In examples above, nested queries can be evaluated once for the entire ”lifetime”
of the full query. In some situations, though, the result of the inner query
depends changes as the evaluation of the outer query proceeds. Such queries
are called correlated queries.

Examples. The query below reports the highest balance for each type of the
account.

SELECT DISTINCT A.Type, A.Balance

FROM Accounts A

WHERE A.Balance >= (SELECT Balance FROM Accounts AA

WHERE AA.Type = A.Type);

Note, that in this case, correlating subquery and the main query is unavoid-
able — the subquery has to select only the balances of accounts of the same
type as the current account number being considered in the outer query.

5

The next query is one possible way of finding all accounts that had transac-
tions on October 1, 2007.

SELECT A.AcctNo, A.Owner

FROM Accounts A

WHERE EXISTS (SELECT * FROM Transactions t

WHERE t.TDate = ’01-Oct-2007’ AND t.AcctNo = A.AcctNo);

In this case the use of EXISTS operation naturally represents our intuition:
we are not interested in the specific details of transactions that happened on
October 1, 2007, rather, we are simply verifying that such transactions exist for
each account.

Nested queries that return relational tables

SELECT statements that return multicolumn relational tables can also be used
as subqueries. The table below shows operations which they can be used:

Expression Allowed Operators

EXISTS (<Subquery>) N/A
<Tuple> IN (<SubQuery>) N/A
<Tuple> <OP> ALL (<SubQuery>) =, <>, ! =
<Tuple> <OP> ANY (<SubQuery>) =, <>, ! =

Examples. Consider the Accounts and Transactions tables discussed above.
Accounts(AcctNo, Owner, Type, DateOpened, Balance)

Transactions(AcctNo, TDate, TType, Before, After)

The following query finds all dates when transactions like (same account type,
same amount) any transactions on the accounts owned by Bob Brown occured.

SELECT TDate

FROM Transactions

WHERE (TType, After - Before) = ANY (SELECT TType, After-Before

FROM Transactions T, Accounts A

WHERE A.AcctNo = T.AcctNo and A.Owner =’Bob Brown’);

Other uses of subqueries

Subqueries in Set Operation statements

We note briefly that the set operations UNION, INTERSECT and MINUS (or EXCEPT)
are instances of the use of SELECT subqueries.

Subqueries in CREATE TABLE statements

New tables can be created to store results of specific queries. The syntax is:

CREATE TABLE <Name> AS (<SubQuery>);

6

Example. The following query creates a report of account activity for the
month of October. The table contains the account number, owner’s name and
the account type, and the total activity information.

CREATE TABLE OctoberActivity AS

(SELECT A.AcctNo, A.Owner, A.Type, SUM(T.Change) AS Activity

FROM Accounts A, (SELECT AcctNo, After - Before AS Change

FROM Transactions

WHERE TDate >= ’01-Oct-2007’ and TDate<= ’31-Oct-2007’) T

WHERE A.AcctNo = T.AcctNo

GROUP BY A.AcctNo, A.Owner, A.Type);

7

