
. .

Cal Poly CPE/CSC 365: Introduction to Database Systems Alexander Dekhtyar
. .

Database Connectivity: JDBC

Database Connecitivity Basics

Application-level database connectivity:

• Host language (Java, C/C++, Perl, PHP, etc)

• Target DBMS (Oracle, MS SQL server, IBM DB2, MySQL, etc)

• Client — Server environment

– Client: application program

– Server: DBMS

General structure:

• Load database driver/database support functionality

• form an SQL statement

• connect to the DBMS

• pass SQL statement to the DBMS

• recieve result

• close connection

JDBC

JDBC originally, an abbreviation for Java Database Connectivity is the database
connectivity package for Java.

JDBC driver

On CSL, JDBC drivers are located in the

/app/oracle/product/10.2.0/client 1/jdbc/lib

1

directory (i.e., it is part of the Oracle software package).

Filename Description

classes12.jar JDBC driver for JDK 1.2 and 1.3
ojdbc14.jar JDBC driver for JDK 1.4, 5.0 and above (use this!)

To successfully compile Java programs using JDBC, this directory needs to
be added to your CLASSPATH environment variable.

in bash the command is:

export CLASSPATH=/app/oracle/product/10.2.0/client 1/jdbc/lib/*.jar

in tcsh/csh the command is:

setenv CLASSPATH /app/oracle/product/10.2.0/client 1/jdbc/lib/*.jar

Alternatively, run your Java programs using the following command

$ java -cp $ORACLE_HOME/jdbc/lib/ojdbc14.jar:. <Program>

JDBC Package

The JDBC package name is java.sql. When writing Java applications, which
include JDBC connectivity, add to your import section

import java.sql.*

Loading the database driver

First task in any JDBC application is loading the JDBC driver for the right
DBMS. This is achieved using Class.forName(String Name) method. The
argument passed to the Class.forNamemethod is the name of the JDBC driver
for a specific DBMS server.

DBMS Driver name

Oracle oracle.jdbc.OracleDriver

MySQL com.mysql.jdbc.driver

Microsoft SQL Server com.microsoft.jdbc.sqlserver.SQLServerDriver

IBM DB2 COM.ibm.db2.jdbc.app.DB2Driver

Class.forName() invokation must be inside Java’s try–catch block.

Example. The following code loads Oracle’s JDBC driver or, if unsuccessful,
reports an error.

try{

Class.forName("oracle.jdbc.OracleDriver");

}

catch (ClassNotFoundException ex)

{

System.out.println("Driver not found");

};

2

Establishing a Connection

JDBC package contains a Connection class representing client-server connec-
tions between the client Java applications and the DBMS servers. An instance
of the Connection class will be created via the following driver manager call:

Connection conn = DriverManager.getConnection(url, userId, password);

Here,

url is a connection URL specifying location and connection port for the database.
See below for syntax.

userId is the DBMS user login account.

password is the password for the DBMS account of the user userId.

Connection URL

Connection url has the following syntax:

<driver>:<dbms>:<connection-type>@<host>:<port>:<server-name>

For CSL machines, use the following line value for the connection url:

jdbc:oracle:thin:@hercules.csc.calpoly.edu:1522:ora10g

Example. The following code establishes the connection to our Oracle server
for one of the student accounts:

Connection conn = null;

String url = "jdbc:oracle:thin:@hercules.csc.calpoly.edu:1522:ora10g";

String user ="ST44";

String password="empty";

try {

conn = DriverManager.getConnection(url, user, password);

}

catch (Exception ex)

{

System.out.println("Could not open connection");

};

Statements

Work with a Connection object within a Java program is straghtforward: SQL
statements are created and passed via the connection, results are recieved in
return. There are three classes for SQL statements:

Statement: general use statement class. Used for creation and execution of
SQL statements, typically, once during the run of the program.

PreparedStatement: statement class to be used in the following cases:

• an sequence of similar SQL statements, different only in values of
some parameters needs to be executed;

3

• a single time-consuming SQL statement needs to be executed, possi-
bly multiple times.

SQL statements represented by instances of PreparedStatement class are
pre-compiled and thus may be more efficiently executed.

CallableStatement: statement class for execution of stored SQL (PL/SQL)
procedures.

Instances of each class are obtained by invoking (see below) methods from
the Connection class.

JDBC distinguishes two types of SQL statements:

Non-Query SQL statements: All DDL and DML statements, which do NOT
return relational tables.

Queries: SELECT statements and their combinations, which return relational
tables.

Because queries return tables while non-queries return only exit status, dif-
ferent methods are used to pass these two types of SQL statements.

Class Statement

Obtaining Instances. Instances of class Statement can be obtained by in-
voking the createStatement() method of the Connection class:

Statement s = conn.createStatement();

Executing non-queries. Non-queries (a.k.a. updates) are executed using
method executeUpdate() of class Statement. While, several method signa-
tures exist, the method call to be used under most stanard circumstances is:

int executeUpdate(String sql) throws SQLException

The method returns the number of rows affected by the update, 0 if a DDL
statement (CREATE TABLE, etc.) was executed.

For example, the following sequence executes two statements: a table Employees
is created and a record is inserted into it.

String sql = "CREATE TABLE Employee" +

"(Id INT PRIMARY KEY, " +

"Name CHAR(30), Salary INT)";

try{

s.executeUpdate(sql);

s.executeUpdate("INSERT INTO Employee VALUES(1,’John Smith’, 30000");

} catch (SQLException e) { }

Note, that the Statement instance is reusable. Generally speaking, in order
to execute a sequence of SQL statements, you only need to create one Statement
instance.

4

Executing SQL queries. Use method executeQuery() of class Statement.
The method returns an instance of the class ResultSet, which is discussed
below.

try{

ResultSet result = s.executeQuery("SELECT * FROM Employees WHERE Name=’Jones’");

} catch (SQLException e) { }

Class PreparedStatement

PreparedStatement should be used when the same query with possibly different
parameters is to be executed multiple times in the course of a program.

Instances of PreparedStatement are created with an SQL statement, possibly
with parameter placeholders associated with them, and that association cannot
change.

Obtaining instances. Instances of class PreparedStatement can be obtained
by invoking the prepareStatement() method of the Connection class:

String sql = "INSERT INTO Employee VALUES(2, ’Bob Brown’, 40000)";

PreparedStatement s = conn.prepareStatement(sql);

This code creates a prepared SQL statement associated with the SQL state-
ment INSERT INTO Employee VALUES(2, ’Bob Brown’, 40000).

Paremeterized Prepared Statements. The text of the SQL code for the
PreparedStatement instance can contain ’?’ symbols: one symbol per input
parameter to the query. For example, in order to create a generic parameterized
INSERT statement for the Employee table, we can do the following:

String sql1 = "INSERT INTO Employee VALUES(?,?,?)";

PreparedStatement s1 = conn.prepareStatement(sql1);

prepareStatement() method parses the input SQL string and identifies lo-
cations of all parameters. Each parameter gets a number (starting with 1).

Setting Parameter Values. PreparedStatement uses the following meth-
ods to set values for parameters (note: all methods are void and throw SQLException):

Method Explanation

setNull(int parIndex, int jdbcType) sets parameter parIndex to null

setBoolean(int parIndex, boolean x) sets parameter parIndex to a boolean value x

setByte(int parIndex, byte x) sets parameter parIndex to a byte value x

setInt(int parIndex, int x) sets parameter parIndex to an integet value x

setLong(int parIndex, long x) sets parameter parIndex to a long integer value x

setFloat(int parIndex, float x) sets parameter parIndex to a floating point value x

setDouble(int parIndex, double x) sets parameter parIndex to a double precision value x

setString(int parIndex, String x) sets parameter parIndex to a string value x

setDate(int parIndex, java.sql.Date x) sets parameter parIndex to a date value x

setTime(int parIndex, java.sql.Time x) sets parameter parIndex to a time value x

clearParameters() clears the values of all parameters

5

Executing non-query statements. PreparedStatement class has the executeUpdate()
method to execute non-query SQL statements. This method takes no input ar-
guments (since the SQL statement is already prepared).

The following example shows how parameters are set up and prepared updates
are executed:

try{

s1.setInt(1,3); //set first column value for the INSERT statement (ID)

s1.setString(’Mary Williams’); //set second column value (Name)

s1.setInt(45000); //set third column value (Salary)

s1.executeUpdate(); //execute INSERT INTO Employee VALUES(3,’Mary Williams,45000’)

} catch (SQLException e) {}

Executing queries. To execute queries, use executeQuery() method, which
also does not take any arguments. This method returns an instance of ResultSet.

The following code fragment shows the preparation and execution of SELECT
statements which select rows of the Employee table by salary.

try{

string sql2 = "SELECT * FROM Employee WHERE Salary > ?";

PreparedStatement s2 = conn.prepareStatement(sql2);

s2.setString(1,35000);

ResultSet result = s2.executeQuery(); //execute SELECT * FROM Employee WHERE Salary > 35000

s2.clearParameters(); // clear all parameters

s2.setString(1,42000);

result = s2.executeQuery(); //execute SELECT * FROM Employee WHERE Salary > 42000

} catch (SQLException e) {}

Working with output: Class ResultSet

Results of SELECT statements (and other SQL statements that return tables)
are stored in instances of the ResultSet class.

An instance of the ResultSet maintains a cursor which points to the cur-
rently observed record (tuple) in the returned table. The following methods can
be used to navigate a ResultSet object:

Method Explanation

boolean next() move cursor to the next record.

boolean previous() move cursor to the previous record.

boolean first() move cursor in front of the first record.

boolean last() move cursor to the last row of the cursor.

boolean absolute(int row) move cursor to the record number row.

boolrsn relative(int rows) move cursor rows records from the current position.

boolean isLast() true if the cursor is on the last row.

void close() close the cursor, release JDBC resources.

boolean wasNull() true if the last column read had null value

int findColumn(String columnName) returns the column number given the name of the column

In addition to these methods, a collection of get methods is associated with
ResultSet class. Each get method retrieves one value from the current record
(tuple) in the cursor. There are two families of get methods: one family re-
trieves values by column number, the other — by column name.

6

get by Column Number get by Column Name Explanation

String getString(int colIndex) String getString(String colName) retrieve a string value

boolean getBoolean(int colIndex) boolean getBoolean(String colName) retrieve a boolean value

byte getByte(int colIndex) byte getByte(String colName) retrieve a byte value

short getShort(int colIndex) short getShort(String colName) retrieve a short integer value

int getInt(int colIndex) int getInt(String colName) retrieve an integer value

float getFloat(int colIndex) float getFloat(String colName) retrieve a floating point value

double getDouble(int colIndex) double getDouble(String colName) retrieve a double precision value

java.sql.Date getDate(int colIndex) java.sql.Date getDate(String colName) retrieve a string value

Example. The code fragment below prints out the values of the Name column
from the Employee table returned from the query.

Statement query = conn.createStatement();

ResultSet result = query.executeQuery("SELECT * FROM Employee WHERE Salary > 27000");

boolean f = result.next(); // original position of the cursor - before first record

while (f)

{

String s = result.getString("Name");

System.out.println(s);

f=result.next();

}

Types of ResultSet instances

ResultSet instances can be of one of three types:

• TYPE FORWARD ONLY: the result set is non-scrollable, the cursor can be
moved using only the next() and last() methods (no methods that go
back can be used) (default).

• TYPE SCROLL INSENSITIVE: the result set is scrollable, i.e., the cursor can
be moved both forward (next(), last()) and backwards (previous(),
first()). Also, the result set typically does not change in response to
changes in the database.

• TYPE SCROLL SENSITIVE: the result set is scrollable, i.e., the cursor can
be moved both forward (next(), last()) and backwards (previous(),
first()). Also, the result set typically changes if the data in the under-
lying database changes.

In addition, the result set may, or may not be updatable. This is controlled
by the concurrency setting:

• CONCUR READ ONLY: the result set is read-only, no programmatic updates
are allowed (default).

• CONCUR UPDATABLE: the result set can be updated programmatically.

The type of the ResultSet instance to be returned by executeQuery() state-
ments can be selected at the creation time of the SQL statement object:

• Class Statement: default result set type set by the createStatement()

method is TYPE FORWARD ONLY, and the concurrency setting is CONCUR READ ONLY.

To create a statement with a different type of result set use

7

createStatement(int Scrollable, int Concur)

Here, Scrollable is the scrollability type (one of TYPE FORWARD ONLY,
TYPE SCROLL INSENSITIVE, TYPE SCROLL SENSITIVE) and Concur is the
concurrency setting (one of CONCUR READ ONLY, CONCUR UPDATABLE)1.

JDBC Types

JDBC package contains a number of JDBC type constants that are used to pass
to the DBMS server the information about the type of various arguments. All
constant declarations are made as as below:

public static final int NULL = 0;

The full list of types names, their ids and the appropriate Java types (for type
conversion purposes) is below:

JDBC type Constant Value matching Java Type

NULL 0 N/A
OTHER 1111 N/A
BIT -7 boolean

TINYINT -6 byte

SMALLINT 5 short

INTEGER 4 int

BIGINT -5 long

FLOAT 6 double

REAL 7 float

DOUBLE 8 double

CHAR 1 String

VARCHAR 12 String

LONGVARCHAR -1 String

DATE 91 java.sql.Date

TIME 92 java.sql.Time

TIMESTAMP 93 java.sql.Timestamp

BINARY -2 byte[]

VARBINARY -3 byte[]

LONGVARBINARY -4 byte[]

JAVA OBJECT 2000 underlying Java class

DISTINCT 2001 N/A
STRUCT 2002 Struct

ARRAY 2003 Array

BLOB 2004 Blob

CLOB 2005 Clob

REF 2006 Ref

DATALINK 70 java.net.URL

BOOLEAN 16 boolean

1For the purposes of this course, we can live with the default concurrency setting, and

do not even need to know about it. However, Connection class does not have a version of

createStatement() that sets only the scrollability setting, hence, a brief description of the

second argument is needed.

8

