
. .

Cal Poly CPE/CSC 365: Introduction to Database Systems Alexander Dekhtyar
. .

SQL: Structured Query Language

JOIN Syntax and Outer Joins

JOIN Syntax

The simplest way of specifying a join of two tables R and S on a pair of attributes
R.A and S.B (e.g., an equijoin) in SQL is to put the two tables in a comma-
separated expression in the FROM clause, and to put the join condition in the
WHERE clause:

SELECT *

FROM R, S

WHERE R.A = S.B;

However, SQL-92 (and later standards) standard provides for an alternative
syntax for the FROM clause expressions indicating specific join operations. This
syntax duplicates the comma-separated tables/conditions in the WHERE clause
syntax for regular Θ-joins (this includes equijoins and natural joins) and semi-
joins. However, this syntax also provides syntax for another type of join opera-
tion, outer join, discussed below.

The full syntax of a JOIN expression in the FROM clause is as follows:

<JOIN-clause> ::= <NaturalJOIN-clause> | <QualifiedJOIN-clause>

<NaturalJOIN-clause> ::= <Table> NATURAL JOIN <Table>

<QualifiedJOIN-clause> ::= <Table> [INNER| {LEFT|RIGHT|FULL} [OUTER]] JOIN

<Table> {ON <join condition>|USING (<columns>)}

We discuss all joins except for outer join immedeately below. Outer joins are
discussed in the next section.

Natural Join

SQL query

SELECT *

FROM R NATURAL JOIN S

;

1

computes R ⊲⊳ S, the natural join of tables R and S (this assumes R and S share
attributes with the same name that are of the same type).

For example, if the relational schema for R is R(A,B,C) and the relational
schema for S is S(A,C,D,E), the query above is equivalent to the following SQL
query the uses simple syntax:

SELECT R.*, S.D, S.E

FROM R, S

WHERE R.A = S.A and R.C = S.C

;

Qualified Joins

Any join that is not a natural join is referred to as a qualified join, because
a qualification, i.e., a join condition needs to be provided. There syntax for a
”standard” qualified join is:

SELECT <Select-clause>

FROM <Table> [INNER] JOIN ON <condition>

;

Here:

• INNER: optional keyword "INNER" is sometimes used to highlight that the
join operation to be performed is not an outer join (see below).

• <condition> is a SQL expression that specifies the join condition.

Example. Consider two tables:

Students(Id, Name, Major)

Grades(Student, CourseId, Quarter, Grade, Note)

where Students.Id is the primary key of the first table, and (Grades.Student,

Grades.CourseId) is the primary key of the second table. Also, Grades.Student
is a foreign key referencing Students.

The following SQL query:

SELECT *

FROM Students s INNER JOIN Grades g ON s.Id = g.Student

;

represents the join query

Students ⊲⊳Id=Student Grades,

which can also be represented by an equivalent SQL expression

SELECT *

FROM Students s, Grades g

WHERE s.Id = g.Student

;

2

Column join. If two tables share column names but a join is desired only on
a subset of columns with shared names, SQL provides special syntax for it:

SELECT *

FROM <Table> [INNER] JOIN USING (<columns>);

Example. Consider the two tables Students and Grades defined earlier, and
add to them the table

Courses(CourseId, Title, Note),

where Courses.CourseId is the primary key such that Grades.CourseId is a
foreign key referencing Courses.

Because of the presence of the Note attribute in both Courses and Grades

table, it is impossible to join them using a natural join. However, the following
SQL query

SELECT *

FROM Courses JOIN Grades USING (CourseId)

;

computes the join query

Courses ⊲⊳Courses.CourseId=Grades.CourseId Grades,

which can also be computed using SQL expressions

SELECT *

FROM Courses c JOIN Grades g ON c.CourseId = g.CourseId

;

and

SELECT *

FROM Courses c, Grades g

WHERE c.CourseId = g.CourseId

;

Multiple JOIN expressions

Multiple join expressions are allowed in the FROM clause. When multiple joins
are needed, use parentheses to indicate the logical order of join operations.

Note: Remember, that join (⊲⊳Θ) is a binary operation, i.e., it takes two

tables as inputs. A relational algebra expression

R ⊲⊳Θ S ⊲⊳Θ′ T

is allowed to exist due to left-assoicativity of binary operations in relational
algebra: i.e.,

R ⊲⊳Θ S ⊲⊳Θ′ T ≡ (R ⊲⊳Θ S) ⊲⊳Θ′ T.

In SQL FROM clause parentheses must be used to avoid ambiguity.

3

Example. Consider the following join expression on the three tables, Students,
Grades and Courses introduced above:

(Courses ⊲⊳Courses.CourseId=Grades.CourseId Grades) ⊲⊳Grades.Student=Students.Id Students.

The SQL query for this expression that uses only JOIN syntax is

SELECT *

FROM (Courses JOIN Grades g USING (CourseId))

JOIN Students s ON g.Student = s.Id

;

Outer Joins

Definition. Let R(A1, . . . An) and S(B1, . . . , Bk) be two relational tables.

The left outer join of R and S on condition Θ, denoted R ⊲⊳Θ S is defined as

R ⊲⊳ΘS = (R ⊲⊳Θ S)∪{(t, NULL, . . . , NULL)|t ∈ R and no tuple t′ ∈ S can be joined with t on condition Θ}.

The right outer join of R and S on condition Θ, denoted R ⊲⊳ Θ S is defined
as

R⊲⊳ ΘS = (R ⊲⊳Θ S)∪{(NULL, . . . , NULL, t′)|t′ ∈ S and no tuple t ∈ R can be joined with t′ on condition Θ}.

Finally, the (full) outer join of R and S on condition Θ, denoted R...S is
defined as

R ⊲⊳ Θ S = (R ⊲⊳Θ S) ∪ (R ⊲⊳ Θ S).

Explanation. An Outer join of two tables on a given condition Θ consists of
two parts. The first part is the regular join R ⊲⊳Θ S.

However, it is possible that for some tuple t in R there are no tuples from S

that can be joined with it. Similarly, for some tuple t′ from S there may be no
tuples in T that can join it.

These tuples won’t be present in the output of R ⊲⊳Θ S.

Outer join extends the regular join, by including such tuples:

• left outer join includes tuples t ∈ R for which there are no counterparts
in S. These tuples are padded with NULL values.

• right outer join includes tuples t′ ∈ S for which there are no counterparts
in R. These tuples are padded with NULL values.

• full outer join includes both the extra tuples from the left and the right
outer joins.

4

Example. Consider the relational tables Students, Grades and Courses dis-
cussed above.

The department chair of the Computer Science department wants to know
how CS majors are doing in CSC 349, a required course in the CS curriculum.
He can express his interest as the query

σmajor=′CS′(Students) ⊲⊳Id=Student σCourseId=′CSC349′(Grades),

which can be rewritten in SQL (using simple syntax) as

SELECT *

FROM Students s, grades g

WHERE s.major = ’CS’ and g.CourseId = ’CSC349 and

s.Id = g.Student

;

This will yield a list of CS majors who took CSC 349 and their grades.

However, the chair may want extra information, namely - he wants to find
out who has NOT taken CSC 349 yet. This, of course can be computed via the
following query:

σmajor=′CS′(Students)−πStudents.∗(σmajor=′CS′(Students) ⊲⊳Id=Student σCourseId=′CSC349′(Grades)),

which, in SQL, can be expressed as:

(SELECT * FROM Students WHERE major = ’CS’)

MINUS

(SELECT s.*

FROM Students s, grades g

WHERE s.major = ’CS’ and g.CourseId = ’CSC349 and

s.Id = g.Student

)

;

But it takes two queries to get this information. The department chair wants
to see the list of student achievements in CSC 349 in a single list that puts
students who took the course (and their grades) side by side with the CS majors
who did not take the course.

This is where the outer joins come in handy. The query the department chair
is looking for is the left outer join of CS majors and CSC 349 grades:

σmajor=′CS′(Students) ⊲⊳ σCourseId=′CSC349′(Grades).

SQL Syntax for Outer Joins

SQL-92 provides special JOIN syntax for outer join queries. We note, that
unlike other join queries, outer joins can be expressed only using the JOIN

expressions in the FROM clause1.

1Up until version 10g, Oracle (a) did not have JOIN expression syntax implemented and
(b) had special ”homebrew” syntax to allow for certain types of outer joins - it involved
using ”(+)” symbols around join conditions; full outer join had to be expressed as a union.
However, Oracle’s syntax was not based on SQL-92 standard or other SQL standards. Oracle
fully supports JOIN syntax starting with version 10g.

5

The syntax for outer joins is:

SELECT <columns>

FROM <Table> {LEFT|RIGHT|FULL} OUTER JOIN {ON <condition> | USING (<columns>)}

;

Oracle allows to omit OUTER (i.e., it uses, RIGHT, LEFT or FULL as tell-tales of
an outer join) from the join expression, however, for increased readability (and
portability of SQL code), it is recommended that OUTER is included in all outer
join expressions.

Example. Continuing the example above, the SQL query for

σmajor=′CS′(Students) ⊲⊳Id=Student σCourseId=′CSC349′(Grades)

is

SELECT *

FROM (SELECT * FROM Students WHERE major = ’CS’) LEFT OUTER JOIN

(SELECT * FROM Grades WHERE CourseID = ’CSC349’) ON Id = Student

;

Notice that this query is different from the following SQL query:

SELECT *

FROM Students LEFT OUTER JOIN Grades ON Id = Student

WHERE major = ’CS’ and CourseID = ’CSC349’

;

The latter SQL expression represents the query

σmajor=′CS′∧CourseId=′CSC349′(Students.Grades).

Note that because Grades.Student is a foreign key onto Students, the outer
join Students ⊲⊳Id=Student Grades is actually equal to Students ⊲⊳Id=Student

Grades. Because of this, the query above will list all CS majors who took
CSC349 with their grade in that course.

Please, be careful when writing your outer join queries. Make sure

you use outer join operation on the right data!

6

