
. .

Cal Poly CPE/CSC 365: Introduction to Database Systems Alexander Dekhtyar
. .

SQL: Structured Query Language

Grouping Queries: Example

How Grouping works

Consider two relations R(A,B,C) and S(B,D) (all attributes are integer). Con-
sider the following instances of tables R and S:

R

A B C
1 2 2
1 4 4
2 2 5
3 4 8
2 4 1
3 4 12

S

B D
2 1
4 7

Consider the following SQL query

SELECT R.A, SUM(R.B), AVG(R.C), COUNT(*), MIN(S.D)

FROM R, S

WHERE R.B = S.B and

R.C < 10

GROUP BY R.A

HAVING COUNT(*) > 1;

This query is evaluated as follows.

Step 1. FROM Clause: Cartesian Product. First, the FROM clause is evalu-
ated. It is convenient to view thist step as creation of a cartesian product of all
tables referenced in the FROM clause. Here, this leads to computation of R × S:

1



R×S

R.A R.B R.C S.B S.D
1 2 2 2 1
1 4 4 2 1
2 2 5 2 1
3 4 8 2 1
2 4 1 2 1
3 4 12 2 1
1 2 2 4 7
1 4 4 4 7
2 2 5 4 7
3 4 8 4 7
2 4 1 4 7
3 4 12 4 7

Step 2: WHERE Clause: Join and selection. On this step, each tuple in
the cartesian product constructed on the previous step is evaluated against the
conditions specified in the WHERE clause.

Here, the first condition, R.B=S.B specifies an equijoin between R and S, while
the second condition, R.C < 10 specifies a selection. In the table below (on the
right), tuples satisfying the first condition are marked in italics, while tuples
satisfying the second condition are in bold. The result of this operation is
shown on the left.

R×S

R.A R.B R.C S.B S.D
1 2 2 2 1

1 4 4 2 1

2 2 5 2 1

3 4 8 2 1

2 4 1 2 1

3 4 12 2 1
1 2 2 4 7

1 4 4 4 7

2 2 5 4 7

3 4 8 4 7

2 4 1 4 7

3 4 12 4 7

=⇒

σR.C<10(R ⊲⊳R.B=S.B S)
R.A R.B R.C S.B S.D
1 2 2 2 1
2 2 5 2 1
1 4 4 4 7
3 4 8 4 7
2 4 1 4 7

Step 3: GROUP BY clause: grouping. The GROUP BY clause causes the trans-
formation from the space of attributes defined by R×S to the space of attributes
that consists of

• All attributes mentioned in the GROUP BY clause.

• All aggregates of the attrtibutes NOT mentioned in the GROUP BY clause.

• COUNT(*).

We can illustrate it in two steps. First, we reorder tuples in the σR.C<10(R ⊲⊳R.B=S.B

S) and identify groups:

2



σR.C<10(R ⊲⊳R.B=S.B S)
R.A R.B R.C S.B S.D
1 2 2 2 1
2 2 5 2 1
1 4 4 4 7
3 4 8 4 7
2 4 1 4 7

=⇒

σR.C<10(R ⊲⊳R.B=S.B S)
R.A R.B R.C S.B S.D
1 2 2 2 1

4 4 4 7
2 2 5 2 1

4 1 4 7
3 4 8 4 7

Next, we replace each of the attributes R.B, R.C, S.B, S.C with five columns
representing the aggregates COUNT(DISTINCT ), SUM(), AVG(), MIN() and MAX()

for each column. We also add one more attribute, COUNT(*) to the list. We
then populate the new columns with the corresponding values:

σR.C<10(R ⊲⊳R.B=S.B S)
R.A R.B R.C S.B S.D
1 2 2 2 1

4 4 4 7
2 2 5 2 1

4 1 4 7
3 4 8 4 7

=⇒

γR.A(σR.C<10(R ⊲⊳ S))

R.A COUNT(*) C(R) A(B) S(B) m(B) M(B) C(C) A(C) S(C) m(C) M(C) C(D) A(D) S(D) m(D) M(D)

1 2 2 3 6 2 4 2 3 6 2 4 2 4 8 1 7
2 2 2 3 6 2 4 2 3 6 1 5 2 4 8 1 7
3 1 1 4 4 4 4 1 8 8 8 8 1 7 7 7 7

(Note: C(<Att>) stands for COUNT(DISTINCT <Att>), S(Att) is for SUM(<Att>),
A(<Att>) is for AVG(<Att>), m(<Att>) is for MIN(<Att>), and M(<Att>) is for
MAX(<Att>). Also, to save space, we moved to the natural join of R and S and
removed S.B from the table.)

Step 4. HAVING clause: selection of groups. On this step, the conditions
specified in the HAVING clause of the query are checked for each tuple in the
result of the grouping.

In our query, the HAVING clause has an atomic condition COUNT(*)> 1. First
two groups satisfy it, while the second - does not, which results in the following
table:

σCOUNT(*)>1(γR.A(σR.C<10(R ⊲⊳ S)))

R.A COUNT(*) C(R) A(B) S(B) m(B) M(B) C(C) A(C) S(C) m(C) M(C) C(D) A(D) S(D) m(D) M(D)

1 2 2 3 6 2 4 2 3 6 2 4 2 4 8 1 7
2 2 2 3 6 2 4 2 3 6 1 5 2 4 8 1 7

Step 5. SELECT clause: projection. On the final step, projection takes
place. In our example, only the group identifier, R.A and three aggregate at-
tributes (one for each column form R⊲⊳S) are kept, all other columns are removed.
The result of the entire SELECT statemnet is

R.A SUM(R.B AVG(R.C) MIN(S.D)
1 6 3 1
2 6 3 1

Comments

Please, note the following. The particular example is deisgned to illustrate
on what data SQL query processors execute SELECT statements. However, we
note that not all of the tables discussed in this handout are materialized, i.e.,
explicitly computed. In particular:

3



• query processors almost never materialize cartesian products if there is a
join operation present. Joins are computed directly.

• the table shown at the end of Step 3 is not fully materialized. In par-
ticular, only the columns mentioned either in SELECT or HAVING clauses
will be materialized in addition to the columns defining the group. In our
example, the materialized table would have columns (R.A, COUNT(*),

SUM(R.B), AVG(R.C), MIN(S.D)).

4


