Cal Poly CPE/CSC 365: Introduction to Database Systems

Alexander Dekhtyar

PL/SQL: Introduction

Overview

PL/SQL is a programming language-like extension of SQL. Its implementation
is available on Oracle DBMS servers.

Features of PL/SQL:

e Procedural extension of SQL.

e Variables

e Assignments

e Program control (if-then-else, loops)

e Use of SQL update and query statements
e Cursors, rows, tables

e Anonymous blocks, procedures, functions
e Compiled

— needs static database schema
— no database schema alteration (DDL) commands

— stored procedures
e library packages
- 1/0

— dynamic schemas (allows for use of DDL commands)
Anonymous Blocks and Basic Language Features

An anonymous block is the most basic type of PL/SQL program. The syntax of
an anonymous block is

DECLARE
<declaration-section>

BEGIN
<executable-section>

[EXCEPTION
<exception-handling section>]
END;

Declaration Section, Variables, Type System

The content of the declaration section consists of different declarations. All dec-
larations must end with a semicolumn (”;”). The following declaration types
exist in SQL/PL.

Constant declaration. All constants used in the anonymous block must be
declared. The syntax of a constant declaration is
<ConstantName> constant <Type> := <Value>;

<ConstantName>: name of the constant;
<Type>: type of the constant (see below);
<Value>: value of the constant;

Variable declaration. All global variables in PL/SQL must be declared in
the declaration section'. The format of the variable declaration is

<VarName> <Type> [not null] [:= <Value>];

<VarName>: name of the variable;

<Type>: type of the variable (see below);
not null: (optional) if present, variable must be initialized and may not be null
<Value>: (optional) initial value of the variable.

Procedure declaration. SQL/PL procedures are similar to procedures in
Pascal, or C/Java void functions/methods. Procedures are discussed below.

Function declaration. SQL/PL functions have a return value. Functions
are discussed below.

Type declaration. Declarations of user-defined types in SQL/PL. Discussed
in detail below.

Atomic Data Types

SQL/PL has a type system that is different from the type system of SQL.
SQL types have corresponding SQL/PL type, but the names of the types may
differ.

1SQL/PL allows ad-hoc use of variables with local scope in loops. Such variables need not
be declared at the beginning of the block.

SQL/PL uses the following atomic types.

Category SQL/PL Type SQL Type Explanation

Numeric binary_integer INT
natural unsigned integer, 0 to 231
positive positive integer, 1 to 231
number (m,n) NUMBER (m,n)

Character char(n) CHAR (n)
varchar2(n) VARCHAR2 (n)

Boolean boolean BOOLEAN

Date/Time date DATE

Note: a single variable or constant declaration declares exactly one variable
or constant.

Anchored Types
SQL/PL allows to declare that a type of a variable or constant shall be the same
as the type of another variable, or, more importantly, the type of a column from

some relational table in the database. The type anchoring operator % is used
to specify the anchored type as follows:

<ConstantName> constant <Variable-or-TableColumn>jtype := <Value>;

<VarName> <Variable-or-TableColumn>}%type [not null] [:= <Value>];

Examples

Below is an example of a declaration section of an anonymous block:

DECLARE
-- declaration section starts here

MaxCapacity constant natural := 35; -- nonnegative integer constant

classSize natural; -- nonnegative variable

studentId natural :=0; -- nonnegative initialized variable

databaseCourse constant Courses.Nametype = ’CPE 365’; -- constant with type anchored to Courses.Name
currentCourse Courses.Name/type; -- variable with type anchored to Courses.Name
anotherCourse currentCourse/type; -- variable with type anchored to another variable

Comments. PL/SQL uses -- to indicate that the rest of the line is a com-
ment. Multiline comments are enclosed in /* ...*/.

Executable Section, Statements

The executable section of an anonymous block (as well as the bodies of proce-
dures and functions) consists of a sequence of PL/SQL statements.

The following statements are defined in PL/SQL:

Statement type Syntax Explanation
Null statement null; no operation
Assignment <Var>:=<expression>; assignment
Conditional if <condition> then <statements>; end if; single condition
Conditional if <condition> then <statements>; if-then-else
else <statements> end if;
Conditional if <condition> then <statements>; conditional with multiple cases
elsif <condition> then <statements>;
else <statements>; end if;
Conditional case <expression> case statement
when <value> then <statements>;
[else <statements>;] end case
Conditional case searched case statement
when <booleanExp> then <statements>;
[else <statements>;] end case
Exit exit [when <expression>]; exit from current block statement (loop)
Loop loop <statements>; end loop simple loop w/o termination
Loop for <loopCounter> in [reverse] <lower>..<upper> For-loop
loop <statements>; end loop;
Loop while <condition> loop <statements>; end loop; While-loop
Loop for <recordInedx> in <Cursor> Foreach loop for database table cursors

Procedure call
SQL Statement

loop <statements>; end loop;
<ProcedureName> (<Parameters>) ;
<SQL Statement>;

call specified procedure with specified parameters
execute the SQL statement

Database Access

When PL/SQL program is running it:

e has access to all available database tables;

e may include SQL statements that query, modify the tables (but not the
database schema);

SQL/PL has three compound data types to facilitate database access:

e cursors
e records

e tables.

(Explicit) Cursors

A cursor is a class of data types designed to store a collection (sequence) of table
rows. All global cursors have to be specified in the declaration portion of an

anonymous block.

Cursors are declared as follows:

cursor <CursorName> [return <type>] is <SelectStatement>;

<CursorName>: name of the cursor
<type>: type of the single row in the cursor (optional)
<SelectStatement>: SQL SELECT statement defining the cursor contents

Note:

e cursors get their values defined at the beginning of the program, before
and statements in the body of the block are executed;

e cursors cannot change their values from the result of one SELECT query
to the result of another.

To define the type of the returned tuple, either row types or row type anchors
are used. A row type anchor has syntax

<Table>Yrowtype

where <Table> is the relational table whose tuple type serves as the anchor.

Example. Here are some cursor declarations.

cursor allCourses is SELECT Course.Name, Course.Num FROM Courses;

cursor allCSStudents return Studentsrowtype is
SELECT =*
FROM Students
WHERE Major = ’CS’;

Working with cursors

There are two ways to work with the contents of a cursor: manual navigation,
and the cursor for-loop. Also, cursor variables have attributes that are accessible
from within PL/SQL statements for assessment of the current state of the cursor.

Manual Navigation

Three statements support manual cursor navigation:

open <CursorName>; this statement results in the cursor being opened and the
cursor pointer positioned at the first record of the cursor.

fetch <CurSorName> into jNames;; fetch operation retrieves current tuple
from the cursor and puts its contents into the variables specified in the
<Names> list. alternatively, a single record-type variable name can be spec-
ified, in which case the tuple will be imported into it. The cursor pointer
is moved to the next tuple.

close <CursorName>; this statement closes current cursor.

Cursosr attributes allow PL/SQL statements assess current state of the cur-
sor. The attributes are accessed via the

<CursorName>%,<CursorAttribute>

syntax. The attributes are:

e Jfound : true if the last fetch statement (see below) yielded a record.
e /notfound: true if the last fetch statement did not yield a record.
e ‘irowcount: total number of rows fetched from the cursor already.

e Jisopen: true if the cursor is open.

Cursor for-loop

The syntax of the loop is:

for <recordIndex> in <CursorName>
loop
<statements>;
end loop;

<recordIndex>: a record-type local (loop) variable.
<CursorName>: name of the cursor being iterated.

Parameterized Cursors
Cursors can parameterized. The syntax is
cursor <CursorName> (<parameters>)

[return <type>]
is <SelectStatement>;

<CursorName>: name of the cursor

<type>: type of the single row in the cursor (optional)
<SelectStatement>: SQL SELECT statement defining the cursor contents
<parameters>: list of the cursor’s parameters

Each parameter is declared using the following syntax:
<ParameterName> [IN] <type> [{:= | DEFAULT} <expression>]

Here,

<ParameterName>: name of the parameter

IN: optional specification of the input parameter
<type>: type of the parameter

DEFAULT: specification of the default value
<expression>: default or assigned value of the parameter

The cursor is parameterized in the open command:

open <cursorName>(<values>);

Example. An example of a parameterized cursor declaration is shown below:

declare

cursor mycursor(prefix char(4), cn 1IN Courses.CourseNumbery,type) is
select s.* from Students s, Enrollments e
where s.3SN = e.Student and

e.Course = (select courseld from Courses
where Dept = prefix and CourseNumber = cn);

This cursor results in a list of students enrolled in a course, specified by the
course prefix-course number parameter pair. The cursor can then be instanti-
ated in the body of the block:

open mycursor(’CPE’, 365); // mycursor now contains the list of
// students in CPE 365

Cursor Variables

Cursor variables are different from explicit cursors. In particular:

e Cursor variables do not need to be associated with specific SELECT state-
ments in the declaration portion of the block;

e Prior to declaring cursor variables, an appropriate cursor reference type
must be declared.

e Cursor variables are actually textbfpointers to the locations of cursors.
The type declaration is
type <Name> is ref cursor [return <Type>];

Cursor variables are then declared as variables of type <Name>.

In the body of the block, cursor variables are instantiated using the following
syntax of the open statement:

open <CursorVarName> for <SelectStatement>;

<CursorVarName>: name of the cursor variable
<SelectStaement>: SELECT statement to be used to populate the cursor

Example. We can use the cursor variable to build the cursor described in the
previous example as follows:

declare
type student_record_cursor is ref cursor;
student_record_cursor mycursor;

begin
open mycursor for select s.* from Students s, Enrollments e

where s.SSN = e.Student and
e.Course = (select courseld from Courses
where Dept = *CPE’ and CourseNumber = 365);

end;

Records
SQL/PL record type family is designed to provide convenient way of storing
individual database tuples. A record variable can appear in SQL/PL code via

the following means:

e a user-defined record type was defined and a variable of this type declared;

e avariable was declared to have a type described by the %rowtype attribute
of a database table, cursor or a table type.

The syntax of a user-defined type declaration is:
type <TypeName> is record (<fields>);

<TypeName>: name of the record type
<fields>: list of fields forming the record

The syntax for each field declaration is:

<Name> <type> [[not null] {:=|default} <expression>]

<Name>: name of the field

<type>: type of the field

not null: indicates that the record cannot be null
default : indicates that the record has a default value

<expression>: assigned/default value of the record type
Field declarations are separated by commas.

Access to individual fields of the record is via the
<VarName>.<FieldName>

syntax.

Example The fragment below shows how to define and instantiate record type
variables.

declare
type student_record_type is record // a container type
SSN binary_int DEFAULT O, // for a student record
firstName char(20),
lastName char(20),
major char(10) DEFAULT ’undeclared’,
year binary_int;

studentl student_record_type; // two student record
student2 student_record_type; // variables

course Coursesjrowtype; // a record variable for the Courses table

begin
studentl1.SSN : = 123451234;
studentl.firstName := ’John’;
studentl.lastName := ’McCormick’;
studentl.major := ’CSC’;
studentl.year := 2005;

student2 := studentil;
student2.firstName := ’Alice’;
student2.SSN := 223233322;

course.Dept := ’CPE’;
course.CourseNumber := 365;
end;
Tables

In SQL/PL, table type defines unbounded sparse single-column arrays. (note,
that the single column can be of record type). There are two types of tables:
index-by tables and nested tables. We will mostly discuss the former.

The syntax of a indez-by table type declaration is:

type <Name> is table of <type>
index by binary_integer

<Name>: name of the table type
<type>: type of the entry of the table (can be atomic or record type)

Index-by tables index each table entry (row) using an integer index. When
the table is created, indexes are dense, but they may become sparse with use.

The following operations can be performed on table variables:

<TableVar>(<Value>). Returns the element indexed at row <Value>.

e <TableVar>.count. Returns the number of elements (rows) in the table.

e <TableVar>.delete(<Value>). Removes from the table the record in-
dexed at location <Value>. Also possible <TableVar>.delete(<Valuel>,<Value2>):
deletes all rows between (and including) <Valuel> and <Value2>.

e <TableVar>.exists(<Value>). Returns true if the table contains the
row at the index <Value>.

e <TableVar>.last. Returns the highest-valued index from the table.

e <TableVar>.next(<Value>). Returns the index following the <Value>
parameter, which contains a table row.

e <TableVar>.prior(<Value>). Returns the index preceding the <Value>
parameter, which contains a table row.

