Cal Poly CPE/CSC 365: Introduction to Database Systems

Alexander Dekhtyar

PL/SQL: Functions, Procedures, Packages

User-defined Functions and Procedures in Anony-
mous Blocks

User-defined functions and procedures are to be located in the declaration part
of PL/SQL’s anonymous blocks.

Procedure declaration

Procedures are callable blocks of PL/SQL code which produce side-effects
(e.g., changes in the database, printed output), but do not return any values.

The syntax of the procedure declaration is

procedure <Name> [(<parameters>)] is
[<declarations>]

begin
<statements>;
[exception <statements>;]

end;

<Name> : name of the procedure
<parameters> : comma-separated list of parameters (see below)
<declarations> sequence of type, variable and constant declarations

The syntax for defining a parameter of the procedure is
<VarName> [in] [out] <type>

e in parameters: input parameters: must contain value when the proce-
dure is called, do not change value in the procedure (analagous to pass-
by-value).

e out parameters: output parameters: need not contain value when the
procedure is called, should contain value when the procedure is over (analagous
to pass-by-name/pass-by-reference).

e in out parameters: input-output parameters: must contain value when
the procedure is called, the value may change during the procedure, new
value is returned (analogous to pass-by-name/pass-by-reference).




Function declaration

Functions are callable blocks of PL/SQL code which may produce side-effects,
but also return values.

The syntax of the procedure declaration is

function <Name> [(<parameters>)] return <type> is

[<declarations>]
begin
<statements>;
[exception <statements>;]
end;
<Name> : name of the function
<type> : return type of the function
<parameters> : comma-separated list of parameters

(specified in the same way as for procedures)
<declarations> sequence of type, variable and constant declarations

Forward Declarations

Due to Pascal-like (or Ada-like) semantics of PL/SQL, all functions and proce-
dures must be declared before they are used in any statements. Thus, dealing
with mutually recursive subprograms requires an extra bit of syntax: forward
declarations.

A forward declaration for a procedure or a function declares the procedure/function
name and its parameters (and the return type for the functions):

For procedures:
procedure <Name> [(<parameters>)];

For functions:
function <Name> [(<parameters>)] return <type>;

Note: Full function/procedure declaration must appear at some point below
the forward declaration in the declaration section of an anonymous block.

Stored Functions and Procedures

Functions and procedures defined in anonymous blocks have as their scope only
the anonymous block itself.

Stored Functions and Stored Procedures are first-class database ob-
jects, i.e., just like database tables they are part of the persistent database
state.

Stored functions can be used in:

e SQL statements;
e other stored functions/procedures;

e PL/SQL anonymous blocks and/or local functions/procedures;



e embedded SQL programs;
e database triggers (to be discussed in CPE 366.

Syntax. Similar to that of function and procedure declarations in anonymous
blocks.

For procedures:

create [or replace] procedure <Name> [(<parameters>)] as
[<declarations>]

begin
<statements>;
[exception <statements>;]

end;

For functions:

create [or replace] function <Name> [(<parameters>)] return <type> as
[<declarations>]

begin
<statements>;
[exception <statements>;]

end;

Rules for calling stored functions from SQL statements. SQL seman-
tics requires the following rules when stored functions are called from SQL
statements:

e function has no out parameters;
e function is applicable to a row in the table;

e function returns a data type compatible with some SQL data type.

Return statement

Retrun statement can be found in the body of any subprogram (function or
procedure).

For procedures, use Return;.

For functions, use Return <expression>;.

User-defined Packages

A package groups a number of declarations (types, constants, variables, func-
tions, procedures) together and stores them persistently in on the Oracle’s
server.

A user-defined package consists of:

e Package header declarations: declarations of all constants, variables and
types, as well as specifications (only the heads) for all functions and pro-
cedures.



e Package body declarations: code for all functions and procedures defined
in the package. Also may include package initialization code.

Package header declarations

The syntax is

CREATE [OR REPLACE] package <Name> as

<declarations>;
end;
<Name> : name of the package. All objects defined
Here in the package will be accessible through it.

<declarations> : PL/SQL constant, variable, type declarations and
heads of function and procedure declarations.

Note: If OR REPLACE key phrase is present, then the defined package replaces
a package with the same name, is one exists in the database. If OR REPLACE is
absent, and the package with the given name is already defined, the new package
is not stored.

Package body declaraions

The syntax is

CREATE [OR REPLACE] package body <Name> as
<declarations>;

[begin
<statements>;

end;]
end;

Here,

<Name> : name of the package.
<declarations> : full PL/SQL declarations of functions and procedures.
<statements> : initialization code for the package.

Access to package components.

Access to components of the package is provided via the <PackageName> . <Component>
or <PackageName>.<Component>(<parameters>) syntax.



Example Consider the following simple package header declaration:

create or replace package mineCSU as
constant numCampuses binary_integer :=23;
ourCampus binary_integer := 20;

procedure rollUp_Enrollment();

function largestEnrollment (campus in binary_integer)
returns binary_integer;

function campusName_to_Id(campusName in varchar)
returns binary_integer;

We can now access components of this package as mineCSU.numCampuses,
mineCSU.rollup Enrollment (), mineCSU.campusName to_Id(’Sonoma State
University’).



