SQL: Structured Query Language

SELECT Statement

[ANSI SQL, Oracle SQL, MySQL SQL]

SQL QL (query language) consists, largely, of SELECT statement. Basic SELECT statement looks as follows:

```
SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
[ORDER BY order-list]
;
```

More complex SELECT statements will be studied later.

- `from-list` contains the list of database relations from which the data is to be retrieved.
- `select-list` contains the list of relation attributes (possibly modified) to be returned in the answer to the query.
- `qualification` contains the the conditions which must be satisfied by a database record to be put into the answer set.
- `order-list` controls the order in which the tuples will be reported to the user.

Evaluation of SELECT statement:

1. `from-list` defines a cartesian product of all relations in it.
2. `qualification` defines selection and join conditions on the data.
3. `order-list` specifies how the sort operation should sort the retrieved tuples and determines the order in which the tuples will be reported.
4. `select-list` defines the final look of the output, i.e., the projection attributes.
5. `DISTINCT` specifies duplicate elimination in the final answer set (default for SELECT query: no duplicate elimination).
SQL select Statement and Relational Algebra

[ANSI SQL, Oracle SQL, MySQL SQL]

As one can guess from its evaluation, SELECT statement implements Relational Algebra operations selection, projection, cartesian product, join and sort.

select and selection

Relational algebra operation: \(\sigma_C(R) \)
SELECT statement

```sql
SELECT *
FROM R
WHERE C
```

Note: “*” is a special notation for the selection list that includes all available attributes.

Example: RA: \(\sigma_{\text{salary}>20000}(\text{Employee}) \)
SQL:

```sql
SELECT *
FROM Employee
WHERE salary > 20000
```

select and projection

Relational algebra operation: \(\pi_F(R) \)
SELECT statement

```sql
SELECT DISTINCT F
FROM R
```

Note: Relational algebra operations return sets (with no duplicates), hence to represent true relational algebra projection, we need to use DISTINCT here. While we may ignore this sometimes, please, keep this fact in mind.

Example: RA: \(\pi_{\text{name},\text{salary},\text{position}}(\text{Employee}) \)
SQL:

```sql
SELECT DISTINCT name, salary, position
FROM Employee
```

select and cartesian product

Relational algebra operation: \(R_1 \times R_2 \)
SELECT statement
SELECT *
FROM R1, R2

Note: As mentioned above, more than one relation in the from list represents cartesian product.

Example: RA: Employee × Client
SQL:

SELECT *
FROM Employee, Client

select and join

Relational algebra operation: $R1 \bowtie_{R1.A=R2.B} R2$
SELECT statement

SELECT *
FROM R1, R2
WHERE R1.A = R2.B

Note: For clarity, a simple equijoin is used here. This conversion can be extended to other types of join.

Example: RA: Employee $\bowtie_{Employee.manages=Client.Id} Client$
SQL:

SELECT *
FROM Employee, Client
WHERE Employee.manages = Client.Id

select and sort

Relational algebra operation: $\tau_F(R)$
SELECT statement

SELECT *
FROM R
ORDER BY F

Here, F is a list of attributes from R.

Example: RA: $\tau_{Department}(Employee)$
SQL:

SELECT *
FROM Employee
ORDER BY Department;
From-list

from-list of the SELECT statement has the following format:

\[TableName [TableAlias] [, . . .] \]

- **TableName** is a name of the existing database relation.
- **TableAlias** also known as range variable is an identifier that can be used instead of TableAlias.

While there can be two TableName that have the same value in a from-list, all TableAliases are unique!

Table aliases allow representation of self-joins in SQL

Example

Find all employees in John Smith's department who have bigger salary and output their records side by side.

```
SELECT *
FROM Employee E1, Employee E2
WHERE E1.department = E2.department AND E1.salary < E2.salary
AND E1.name = "John Smith"
```

Select-list

A simple select-list is a comma-separated sequence of attribute names. However, more complex expressions can appear in a select-list.

- *: As mentioned above, this is a shortcut for "all attributes of all relations involved in the query in their natural order".
- **AttributeName** : a simple attribute name can be part of a select-list if the attribute name alone is sufficient to uniquely identify the attribute among all attributes involved in the query;
- **TableName.AttributeName**: if two different relations involved in the query have attributes with the same name, table name must preface the attribute name to guarantee unambiguous identification.
- **TableAlias.AttributeName**: whenever table alias is defined for a relation it is always safe to reference the attribute in this manner. This is also the only way to indicate the exact attribute to be included into select-list in self-joins.
- **Expression**: An expression over different attributes involved in a query is can also be returned in select-list.
- **AttributeSpec AS NewAttributeName**: this form is used to rename the attribute in the result of the query. It can be used to give names to the attributes that are results of expressions as well as to replace TableName.AttributeName names with simpler attribute names.
- **Aggregate Expressions**: SELECT queries also allow for return of aggregate expressions (sums, averages, minimums and maximums, etc.) of attributes. More on that later.
Set Operations in SQL

SELECT statement incorporates a combination of selection, projection, and cartesian product operations (which also enables join). It does not, by itself, allow us to express set operations in relational algebra. The latter is done using three special SQL statements.

Union in SQL

[ANSI SQL, Oracle SQL, MySQL SQL]

The format of the union statement is

\[\text{Expression} \text{ UNION } \text{Expression} \]

Here, \text{Expression} is any expression that resolves as a relational table. Typically, it will be a SELECT statement in parentheses.

The result of the statement is a relational table which is a union of the two table represented by the right-hand side and left-hand side expressions. Duplicates are automatically eliminated.

For example, if \(A \) and \(B \) are two relations with the same schema, to compute their union, we use the following query:

\[
\begin{align*}
&\text{(SELECT * FROM A)} \\
&\text{UNION} \\
&\text{(SELECT * FROM B)}
\end{align*}
\]

Difference in SQL

[ANSI SQL, Oracle SQL]

The format of the difference statement in ANSI SQL-92 standard is

\[\text{Expression EXCEPT Expression} \]

Oracle’s SQL replaces EXCEPT keyword with MINUS:

\[\text{Expression MINUS Expression} \]

The result is the relation what is a difference between the left-hand side and the right-hand side relations.

For example, to compute the difference between two tables \(A \) and \(B \) with the same schema, write the following query:

\[
\begin{align*}
&\text{(SELECT * FROM A)} \\
&\text{MINUS} \\
&\text{(SELECT * FROM B)}
\end{align*}
\]

MySQL does not support set difference as a separate operation.
Intersection in SQL

[ANSI SQL, Oracle SQL]

The format of the difference statement in SQL-92 standard (also supported by Oracle) is

```
Expression INTERSECT Expression
```

The result is the relation what is the intersection between the left-hand side and the right-hand side relations. All duplicates are eliminated automatically.

For example, to compute the intersection between two tables A and B with the same schema, write the following query:

```
(SELECT * FROM A)
INTERSECT
(SELECT * FROM B)
```

MySQL does not support intersection as a separate operation.

Examples

1. Different attribute identifiers.

 Find all books that were borrowed at least twice in 2002 and output the names of the two borrowers in each record in chronological order.

   ```
   SELECT Title, Book.Id, P1.Name, P2.Name
   FROM Books, Loans L1, Loans L2, Patrons P1, Patrons P2
   P1.Id = L1.Pid AND P2.Id = L2.Pid
   AND L1.Date < L2.Date AND L1.Date > 12/31/2001
   ```

 Note: This query is a 5-way join that includes two self-joins: on Patrons and Loans. Title attribute is unambiguous as it exists only in Books. Book qualifier is needed for Book.Id because Patrons relation also has Id field. Finally, P1 and P2 qualifiers for the two Name attributes are needed to indicate which attribute comes from which copy of the Patrons relation.

2. Expressions as columns.

 Output for each employee the sum of his/her salary and bonus.

   ```
   SELECT Name, Salary + Bonus
   FROM Employee
   ```

3. Renaming output columns

 Output for each employee the sum of his/her salary and bonus.

   ```
   SELECT Name AS Employee_Name, Salary + Bonus AS Compensation
   FROM Employee
   ```

 Note: same query as above, only the first field is renamed "Employee_Name" and the second field is given a new name "Compensation".