
. .

Cal Poly CPE/CSC 365: Introduction to Database Systems Alexander Dekhtyar
. .

SQL: Structured Query Language

Views

Database Views

Database View. A database view is a single table that is derived from other
tables in the database, and whose content changes together with the changes in

the tables it is derived from.

Defining database views. A database view V is typically associated with a
single query QV over the database. When discussed theoretically, we assume
that the query is rendered in relational algebra. When working with actual
DBMS, the query is rendered in SQL in the view definition command.

Why? There are a number of reasons why database views are useful.

• Security. A view may yield a subset of a database that is made acessible to
a specific person or a specific application that is otherwise not authorized
to access an entire database.

• Convenience. Views can be used in subsequent SQL tables anywhere where
a SQL table name expected. If a view is defined by a particularly tricky
query, this may help avoid very complex SQL expressions in subsequent
queries. They can effectively be viewed as convenient temp tables.

• Dynamic updates. One of the key features of a view, that makes it a pre-
ferred way of creating temp tables (to actually creating relational tables)
is that a view V views are innately tied to the tables referenced in its
query QV . Whenever new tuples are added to any of those tables, if any
new tuples can be placed into V they automatically are.

Views in SQL

SQL syntax for views is straightforward.

1

View creation. SQL uses CREATE VIEW command for creating a new view:

CREATE VIEW <Name> AS

<SQLQuery>;

Here <Name> is the name of the view, and <SQLQuery> is a SQL expression
defining the view.

Example. Consider a database consisting of the following three tables:

Students(Id INT, Name String, Major String)

Courses(Id String, Name String)

Rosters(Student INT, Course String, Quarter String, Year INT, Grade String)

with primary keys Students.Id, Courses.Id and (Rosters.Student, Rosters.Course,

Rosters.Quarter, Rosters.Year), and foreign keys Rosters.Student refer-
encing Students.Id and Rosters.Course referencing Courses.Id.

Suppose we want to have a handy list of of all students who took CSC 365.
The view definition command for this view is

CREATE VIEW csc365 AS

SELECT s.Name, s.Major, r.Quarter, r.Year, r.Grade

FROM Students s, Roster r

WHERE r.Student = s.Id and r.course = ’CSC 365’

;

Querying views. After they are created, view name is added to the list of
table names available in the database. SQL queries can use the name of the
view where they otherwise can use the name of a relational table.

Example. After the CREATE VIEW command above, we can check the contents
of the csc365 view using the name of the view as if it is a regular relational
table1:

mysql> select *

-> from csc365

-> limit 5;

+------------------+--------------+---------+------+-------+

| Name | Major | quarter | year | grade |

+------------------+--------------+---------+------+-------+

| Rudolph Attia | Mathematics | Fall | 2016 | B |

| Golda Singer | Software Eng | Fall | 2016 | C |

| Francina Dorie | Mathematics | Winter | 2016 | B |

| Carola Davis | English | Winter | 2016 | D |

| Kathaleen Copass | English | Fall | 2016 | A |

+------------------+--------------+---------+------+-------+

5 rows in set (0.00 sec)

Note, that the view is now part of the list of tables:

1The MySQL interactions below use a small database created for the purpose of showing

how views work.

2

mysql> show tables;

+--------------------+

| Tables_in_viewdemo |

+--------------------+

| Courses |

| Rosters |

| Students |

| csc365 |

+--------------------+

4 rows in set (0.00 sec)

Dynamic nature of views. If we add more data to the underlying tables
that satisfies the conditions found in the query QV defining the view V , the new
data appears as part of the view.

Consider the following view:

CREATE VIEW mimiSchedule AS

SELECT Course, Quarter, Year, Grade

FROM Rosters

WHERE Student = (

SELECT Id

FROM Students

WHERE Name = ’Mimi Pallazzo’

)

;

This view shows the list of courses Mimi Pallazzo took. Consider the fol-
lowing sequence of SQL commands executed after the view has been created2.

mysql> select * from mimiSchedule;

+----------+---------+------+-------+

| Course | Quarter | Year | Grade |

+----------+---------+------+-------+

| CSC 365 | Winter | 2016 | C |

| CSC 453 | Winter | 2016 | D |

| MATH 206 | Fall | 2016 | B |

| MATH 248 | Winter | 2016 | B |

+----------+---------+------+-------+

4 rows in set (0.00 sec)

mysql> insert into Rosters VALUES(9,’CSC 453’, ’Spring’, 2016,’B’);

Query OK, 1 row affected (0.00 sec)

mysql> select * from mimiSchedule;

+----------+---------+------+-------+

| Course | Quarter | Year | Grade |

+----------+---------+------+-------+

| CSC 365 | Winter | 2016 | C |

| CSC 453 | Spring | 2016 | B |

| CSC 453 | Winter | 2016 | D |

| MATH 206 | Fall | 2016 | B |

| MATH 248 | Winter | 2016 | B |

+----------+---------+------+-------+

5 rows in set (0.00 sec)

We have inserted information about Mimi Pallazzo retaking CSC 453 in
Spring of 2016 into the Rosters table. As soon as this information appears
in the Rosters table, the contents of the mimiSchedule table change, and the
new entry appears there as well.

2In our test database, Mimi’s student Id is 9.

3

Deleting views. After views are no longer necessary, they can be successfully
deleted using the DROP VIEW command:

DROP VIEW <ViewName>;

where the <ViewName> is the name of the view to be dropped.

View Modifications

In some specific circumstances, DBMS allow for direct view modifications. Views
can be updated using standard DML INSERT, UPDATE and DELETE commands.

Key things to remember are:

• Changes to the contents of the view yield changes to the contents of the
underlying tables.

• Because of the above, views can be modified only when it is possible to
establish a direct one-to-one correspondence between a tuple modified
in the view and an underlying tuple in the base table(s).

• DBMS restrict this even more. Direct views are essentially allowed when:

– the FROM clause of the view definition query QV contains only one
table R.

– there is no duplicate elimination in the query QV , i.e., the query is
SELECT, not SELECT DISTINCT.

– There are no subqueries in the WHERE clause of QV that involve R.

– There are enough attributes in the SELECT clause of QV to uniquely
determine a new tuple from table R (if the remaining attributes are
filled with NULL values).

Example. As seen from above, this a very restrictive set of requirements.

Consider the following view:

CREATE VIEW cs AS

SELECT *

FROM Students

WHERE Major = ’Computer Science’

;

After this view is created, consider the following set of commands:

mysql> select * from cs;

+----+------------------+------------------+

| Id | Name | Major |

+----+------------------+------------------+

| 24 | Matha Kimball | Computer Science |

| 25 | Cinderella Bread | Computer Science |

| 32 | Jeanie Kleekamp | Computer Science |

+----+------------------+------------------+

3 rows in set (0.01 sec)

mysql> INSERT INTO cs VALUES(42, ’Grant Huffman’, ’Computer Science’);

4

Query OK, 1 row affected (0.00 sec)

mysql> select * from cs;

+----+------------------+------------------+

| Id | Name | Major |

+----+------------------+------------------+

| 24 | Matha Kimball | Computer Science |

| 25 | Cinderella Bread | Computer Science |

| 32 | Jeanie Kleekamp | Computer Science |

| 42 | Grant Huffman | Computer Science |

+----+------------------+------------------+

4 rows in set (0.00 sec)

mysql> select * from Students where major = ’Computer Science’;

+----+------------------+------------------+

| Id | Name | Major |

+----+------------------+------------------+

| 24 | Matha Kimball | Computer Science |

| 25 | Cinderella Bread | Computer Science |

| 32 | Jeanie Kleekamp | Computer Science |

| 42 | Grant Huffman | Computer Science |

+----+------------------+------------------+

4 rows in set (0.00 sec)

As seen here, inserting information about Grant Huffman into the cs view
propagates the insertion of the tuple about Grant into the Students table.
Similarly, we may correct spelling errors:

mysql> update cs

-> set Name = ’Grant Hoffman’ where Id = 42;

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> select * from cs;

+----+------------------+------------------+

| Id | Name | Major |

+----+------------------+------------------+

| 24 | Matha Kimball | Computer Science |

| 25 | Cinderella Bread | Computer Science |

| 32 | Jeanie Kleekamp | Computer Science |

| 42 | Grant Hoffman | Computer Science |

+----+------------------+------------------+

4 rows in set (0.00 sec)

mysql> select * from Students where major=’Computer Science’;

+----+------------------+------------------+

| Id | Name | Major |

+----+------------------+------------------+

| 24 | Matha Kimball | Computer Science |

| 25 | Cinderella Bread | Computer Science |

| 32 | Jeanie Kleekamp | Computer Science |

| 42 | Grant Hoffman | Computer Science |

+----+------------------+------------------+

4 rows in set (0.00 sec)

View Implementation in DBMS

Views can be implemented in a number of different ways.

On-the-fly views. A view exists in the DBMS as a query. Each time a view
V is referenced in a SQL query, its defining query QV is executed, and the

5

results are used in the query. The prepared results are not stored after the
SQL query is completed.

Materialized views. A materialized view is a view that exists, as a list of

tuples in the DBMS memory (either on disk or in main memory). Materialized
views have advantages and disadvantages.

Advantages:

• SELECT queries are much faster, as the current state of the view does not
need to be computed on the fly.

• The information represented by the view is made persistent and will not
disappear if there is a crash.

Disadvantages:

• Updates are expensive. There are two strategies.

The first strategy is to materialize the view anew each time an update is
made to the underlying tables. This strategy is feasible only when there
are relatively few updates to the underlying tables take place.

The second strategy is called incremental view update. Under this strat-
egy, each time an update is made to the base tables, a decision procedure
is run to determine whether any new tuples need to be added to the view,
or whether any other modifications to the view need to be performed.
These modifications are then performed as individual insertions, deletions
and updates. This strategy works fine for simple views, but in complex
views that depend on many tables incremental view update becomes com-
putationally very expensive.

MySQL. MySQL does not offer materialized view updates. All MySQL views
are maintained on the on-the-fly basis.

6

