Winter 2015 CSC/CPE 365: Database Systems

Alexander Dekhtyar.

Lab 3-1: Potpourri Part 1

Due date: Thursday, January 29, beginning of the lab period
Note: Lab 3-2 will be assigned during on January 29 in class.

Lab Assignment

Assignment Preparation

This is an individual lab. Each student has to complete all work required
in the lab, and submit all required materials exactly as specified in this
assignment.

Note on data. This lab will require you to use the files you prepared in
Lab 2. You will complete four assignments, using four of the nine course
databases.

You will have to use (and resubmit as part of Lab 3 submission) the files
you submitted for Lab 2 to set up the appropriate databases. These files
will be graded, and the results will be returned to you on Tuesday, January
27. As part of this assignment, you are required to submit the corrected
versions of the CREATE TABLE statements for your databases that take
into account the comments given to you.

Tasks

The assignments in this part are specific to individual databases you cre-
ated in Lab 2. Please execute them only on the specified datasets. The
assignments ask you to change both the schemas and the instances of the
databases.

[STUDENTS dataset.] Create an SQL script STUDENTS-modify.sql
which performs the actions below.




Extend the database structure to include the information about the GPA
for each student.

For the GPA, make certain that only GPAs in the range between 0.0 and
5.0 are allowed. Update the database as follows:

e Keep in the database only the students from grades 1 and 2.

e Set the GPA of first graders from room 102 to 3.0.

Set the GPA of first graders from other rooms to 3.1.

Set the GPA of all second graders to 3.2.

The following instructions apply to individual students and override
all prior GPA assignments.

Set the GPA of ANIKA YUEN to 3.5.
Set the GPA of LANCE HOOSOCK to 3.6

Set the GPA of SUMMER LAPLANT to be 0.7 higher than whatever
it currently is.

Set the GPA of KERI TRAYWICK to be 25% higher than her current
GPA.

Include all necessary SQL commands to achieve this result into the STUDENTS-modify.sql
script. Complete the script with the

SELECT * FROM <students-table>
ORDER BY <GPA-column>, <grade-column>, <student-lastname-column>;

query, replacing <students-table> with the name of your table contain-
ing the list of students and <GPA-column>, <grade-column> and <student-lastname-column>
with the names of the columns storing the GPA, the grade level of each stu-
dent and their last names respectively.

[WINE dataset.] Create an SQL script WINE-modify.sql which per-
forms the actions below.

1. Remove the columns storing the appelation name and the name of the
wine from the table storing the list of wines (we refer to this table as
”the wine table”).

2. Keep in the wine table only the wines with scores of 97 or higher.

3. Modify the length of the attribute storing the winery name to be 14
characters long!.

'If you did everything right, all winery names in the remaining tuples will be shorter
than 14 characters.



4. Output the list of wines using the following SQL query:

SELECT * FROM <wine-table>
ORDER BY <wine-id-column>;

(replace <wine-table> and <wine-id-column> with appropriate, in
your database, names).

5. The remaining wines, are some of the best wines in the world. Their
price appreciates with time. Update the price of each wine using the
following idea: the price of wine increases by X% a year (a simple
increase rate, not a compound one) for each year of vintage, where X
is the difference between the score of the wine and the score 90 (that
is, a 99 point wine increases in price by 9% a year). Assuming the
price of wine in the table at the moment reflects the price during the
production year. Update the price to what it should be in 2015 (part
of the task is to figure out the correct update formula).

6. Output the list of wines using the following SQL query:

SELECT * FROM <wine-table>
ORDER BY <wine-id-column>;

(replace <wine-table> and <wine-id-column> with appropriate, in
your database, names).

[CARS dataset.] Create a SQL script CARS-modify.sql which performs
the following actions.

1. Keep in the table storing the technical characteristics about the cars
(we refer to this table as "the car data table”), ONLY the records that
satisfy at least one of the following conditions:

(a) vehicles made in 1981 and after with accelerations between 14
and 15 (inclusive).

(b) vehicles that are heavier than 4900 lbs.

2. Run the following SQL query:

SELECT =*
FROM <car-data-table>
ORDER BY <year-column>, <car-Id>;

where <car-data-table> is the name of the car data table in your
CARS database and <year-column> is the column in that table storing
the year in which a vehicle was made and <car-id> is the unique Id
of each tuple in the car data table.

3. Remove from the car data table all attributes except car id, car year,
acceleration and weight.



4. Remove from the car data table information about any cars that weigh
between 2000 and 3000 pounds.

5. Run the

SELECT *
FROM <car-data-table>
ORDER BY <year-column>, <car-Id>;

query again.

[KATZENJAMMER dataset.] Create a SQL script KATZENJAMMER-modify.sql
which performs the following actions.

1. In the table specifying which instruments the band members play on
each song (we refer to it as the ”instruments table” below), replace all
occurrences of ’bass balalaika’ with ’awesome bass balalaika’,
and all occurrences of ’guitar’ with ’acoustic guitar’. (Please
note that you may need to change the length of the instrument name
field if it is not long enough in your table - do it using a table schema
modification command, rather than in the CREATE TABLE state-
ment).

2. Keep in the instruments table only the information about ’acoustic
guitar’ players and the information about all instruments Turid (her
band member id is 4 - you can use it directly) played on all songs.

3. Run the following SQL query:

SELECT *
FROM <instruments-table>
ORDER BY <Song-id>, <Bandmate-Id>;

where <instruments-table> is the name of your instruments table,
and <Song-id> and <Bandmate-Id> are the columns in this table with
the song and band member Ids respectively.

4. Add a new attribute to the table describing the albums released by
Katzenjammer. The attribute should store the total number of songs
on the album.

5. Based on information stored in the tracklists table (look up the CSV
file if you have to), update each record in the albums table to show
the correct number of tracks.

6. Run the following SQL query:

SELECT =*
FROM <albums-table>
ORDER BY <Year>;



where <albums-table> is the name of your table of Katzenjammer
albums, and <Year> is the name of the column in the albums table
that stores the year of the album release.

Submission Instructions

Please, follow these instructions exactly. Up to 10% of the Lab 3 grade
will be assigned for conformance to the assignment specifications, including
the submission instructions.

Please, name your files exactly as requested (including capitaliza-
tion), and submit all files in a single archive. Correct submission simplifies
grading, and ensures its correctness.

Please include your name and Cal Poly email address in all files
you are submitting. If you are submitting code/scripts, include, at the
beginning of the file a few comment lines with this information. Files that
cannot be authentificated by observing their content will result in penalties
assessed for your work.

Specific Instructions

You must submit all your files in a single archive. Accepted formats are
gzipped tar (.tar.gz) or zip (.zip).

The file you are submitting must be named 1ab3.zip or lab3.tar.gz.

Inside it, the archive shall contain four directories named CARS, KATZENJAMMER,
STUDENTS and WINE In addition, the root of the directory must contain a
README file, which should, at a minimum, contain your name, Cal Poly email,
and any specific comments concerning your submission.

Each directory shall contain all SQL scripts built by you for the specific
dataset in response to all parts of the lab. The Lab 2 scripts must be
resubmitted, with the correct names. (these are the <Dataset>-setup.sql,
<Dataset>-build-<table>.sql and <Dataset>-cleanup.sql files). New
SQL scripts must be named as specified in the assignments above?.

Submit your archive using the following handin command:

Section 01:
handin dekhtyar 1ab03-01 <file>

Section 04:

handin dekhtyar 1ab03-04 <file>

2After Lab 3-1 and Lab 3-2 we will consolidate your <Dataset>-build-<table>.sql
files into a single one, but for now, keep all files separate.



Testing

Your submission will be tested by running all scripts you supply and checking
the produced output for correctness. I may also use some extra scripts to
verify the correctness of the databases you have constructed.

If you are aware of any bugs, or incorrect behavior of your SQL scripts, 1
strongly suggest that you mention it in the README file.



