Problem 1

Consider relation \(R(A, B, C, D, E, F) \). For each set of FDs shown below, perform the following actions:

(a) Determine all keys and identify all prime and non-prime attributes.

(b) Determine if \(R \) is in 2NF, 3NF, BCNF. Explain all violations of these normal forms.

(c) If \(R \) is NOT in 3NF, decompose \(R \) into 3NF-compliant relations.

\[
\begin{align*}
1. & \quad D, E \rightarrow B, C \\
2. & \quad B \rightarrow A \\
3. & \quad B, F \rightarrow C, A \\
4. & \quad C, A \rightarrow F \\
5. & \quad A, C \rightarrow B \\
& \quad A, B \rightarrow E \\
& \quad B, C \rightarrow D \\
& \quad B, D, E \rightarrow F
\end{align*}
\]
Problem 2

Consider the relation Stocks(B,O,I,S,Q,D) with attributes describing Broker, Office of the broker, Investor, Stock, Quantity owned by investor and Dividend of the stock. The following FDs are asserted:

\[S \rightarrow D \]
\[I \rightarrow B \]
\[I, S \rightarrow Q \]
\[B \rightarrow O \]

1. Find all the keys for Stocks. List all prime and non-prime attributes.

2. Describe all violations of 3NF.

3. Decompose Stocks into a 3NF-compliant database schema.

Problem 3

Consider a relational table \(R(A, B, C, D, E, F) \). For each collection of FDs, find the closure of the following sets of attributes:

(a) \(\{B\} \) (b) \(\{A, D\} \) (c) \(\{C, E\} \) (d) \(\{A, B, F\} \)

1. \(A, E \rightarrow C \)
 \(B, C, D, E \rightarrow A \)
 \(F, D, C \rightarrow B, A \)

2. \(A, D, C \rightarrow C, E \)
 \(B, D, F \rightarrow A, E \)
 \(A, B, C \rightarrow D, E, F \)

3. \(D, F \rightarrow C, A \)
 \(D, C \rightarrow B \)
 \(A \rightarrow C \)
 \(C \rightarrow B, D \)

4. \(B, D \rightarrow E \)
 \(E, F \rightarrow A \)
 \(E, B \rightarrow F \)