Theory of Normal Forms Functional Dependencies in Databases

Functional Dependencies

Functional dependencies allow identify redundancy in relational database schemas.

A functional dependency (FD) on a relation R is a statement of the form:
"If two tuples agree on all attributes A_{1}, \ldots, A_{n} then they must also agree on all attributes B_{1}, \ldots, B_{m}."

A functional dependency is formally denoted as

$$
A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}
$$

We also say " A_{1}, \ldots, A_{n} functionally determine B_{1}, \ldots, B_{m} ".

Keys and Superkeys

Functional dependencies allow us to formalize the definition of a key in a relational table.

A set of one or more attrbiutes A_{1}, \ldots, A_{n} of relational table R is a key of R if:

1. $A_{1}, \ldots, A_{n} \rightarrow B$ for all attributes B of R. (i.e., A_{1}, \ldots, A_{n} functionally determine all attributes of R).
2. No proper subset of A_{1}, \ldots, A_{n} functionally determines all attributes of R.

Informally: a key is a minimal collection of attributes which uniquely identifies all tuples in a relation. A relation can have multiple keys, but for two different keys of the same relation, one cannot be a proper subest of the other.

A superkey of a relation R is any set of attributes that contains a key.

Reasoning about Functional Dependencies

FD Equivalence. Two sets S and T of functional dependencies over some relation R are equivalent if the set of all instances of R satisfying S is the same as the set of all instances of R satisfying T.

FD Implication. A set of FDs S follows a set of FDs T over some relation R if and instance of R that satisfies S also satisfies T.

Rules for Manipulating Functional Dependencies

1. Trivial FDs. Let R be a relation, and let $\left\{B_{1}, \ldots, B_{m}\right\} \subseteq\left\{A_{1}, \ldots, A_{n}\right\}$ be some of R 's attributes. Then the following FD always holds:

$$
A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m}
$$

2. Splitting/Combining Rule. Functional dependencies with multiple attributes in right-hand side can be simplified:

$$
A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m} \equiv A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, A_{1}, \ldots, A_{n} \rightarrow B_{m}
$$

Basically, it means, that we only need to be establishing functional dependencies with a signle attribute on the right-hand side.
3. Trivial Dependency Rule. Let R be a relation. Let $\left\{B_{1}, \ldots, B_{m}\right\} \subseteq$ $\left\{A_{1}, \ldots, A_{n}\right\}$ and let $\left\{C_{1}, \ldots, C_{k}\right\} \cap\left\{A_{1}, \ldots, A_{n}\right\}$. Then, the following FDs are equivalent:

$$
A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m}, C_{1}, \ldots, C_{k} \equiv A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots C_{k}
$$

4. Transitive Rule. $A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m}, B_{1}, \ldots, B_{m} \rightarrow C_{1}, \ldots C_{k} \Longrightarrow$ $A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots C_{k}$

Armstrong's Axioms

Armstrong's axioms are a complete system of FD derivation. Here complete means that using Armstrong's axioms, it is possible to derive from a collection of FDs all FD that logically follow from them.

There are three axioms, two of which parallel the trivial dependency and transitivity rules listed above.

1. Reflexivity. Let R be a relation. Let $\left\{B_{1}, \ldots, B_{m}\right\} \subseteq\left\{A_{1}, \ldots, A_{n}\right\}$ and let $\left\{C_{1}, \ldots, C_{k}\right\} \cap\left\{A_{1}, \ldots, A_{n}\right\}$. Then, the following FDs are equivalent:
$A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m}, C_{1}, \ldots, C_{k} \equiv A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots C_{k}$
2. Augmentation.
$A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m} \Longrightarrow A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{k} \rightarrow B_{1}, \ldots B_{m}, C_{1}, \ldots, C_{k}$,
for any C_{1}, \ldots, C_{l}.

3. Transitivity.

$A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m}, B_{1}, \ldots, B_{m} \rightarrow C_{1}, \ldots C_{k} \Longrightarrow A_{1}, \ldots, A_{n} \rightarrow$ $C_{1}, \ldots C_{k}$

Algorithms For Functional Dependencies

Closure

Closure of a set of attributes. Let R be a relation, and $Q=\left\{A_{1}, \ldots, A_{n}\right\}$ be a subset of R 's attributes. The closure of Q, denoted Q^{+}is a set of attributes, which are functionally determined by Q, given a set S of functional dependencies on R.

FD Closure algorithm. The following algorithm computes the closure of a set of attributes.

```
Algorithm FD-Closure(R Relational_Schema, Q Set_of_Attributes, S Set_of_FDs)
            returns Set_of_Attributes;
// Step 1. split all rules in S
for each f in S
    begin
        if (right side of f has multiple attributes)
        then replace f in S with FDs that have only on attribute on the right;
    end;
// Step 2. Include set Q in the closure
X := Q;
// Step 3. Keep including new attributes for as long as FDs allow
repeat
    X' := X;
    for each f: B1,...,Bn -> C in S
        begin
            if {B1,...,Bn} is a subset of X
            then X := X union {C};
        end;
until (X' == X); // repeat until no new attributes can be added to X
return X;
```

