Theory of Normal Forms Functional Dependencies in Databases

Functional Dependencies

Functional dependencies allow identify *redundancy* in relational database schemas.

A functional dependency (FD) on a relation R is a statement of the form:

"If two tuples agree on all attributes A_1, \ldots, A_n then they must also agree on all attributes B_1, \ldots, B_m ."

A functional dependency is formally denoted as

 $A_1,\ldots,A_n\to B_1,\ldots,B_m$

We also say " A_1, \ldots, A_n functionally determine B_1, \ldots, B_m ".

Keys and Superkeys

Functional dependencies allow us to formalize the definition of a **key** in a relational table.

A set of one or more attributes A_1, \ldots, A_n of relational table R is a **key** of R if:

- 1. $A_1, \ldots, A_n \to B$ for all attributes B of R. (i.e., A_1, \ldots, A_n functionally determine all attributes of R).
- 2. No proper subset of A_1, \ldots, A_n functionally determines all attributes of R.

Informally: a **key** is a minimal collection of attributes which uniquely identifies all tuples in a relation. A relation can have multiple keys, but for two different keys of the same relation, one cannot be a proper subest of the other.

A superkey of a relation R is any set of attributes that contains a key.

Reasoning about Functional Dependencies

FD Equivalence. Two sets S and T of functional dependencies over some relation R are **equivalent** if the set of all instances of R satisfying S is the same as the set of all instances of R satisfying T.

FD Implication. A set of FDs S follows a set of FDs T over some relation R if and instance of R that satisfies S also satisfies T.

Rules for Manipulating Functional Dependencies

1. Trivial FDs. Let *R* be a relation, and let $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$ be some of *R*'s attributes. Then the following FD always holds:

 $A_1,\ldots,A_n\to B_1,\ldots B_m$

2. Splitting/Combining Rule. Functional dependencies with multiple attributes in right-hand side can be simplified:

 $A_1, \ldots, A_n \to B_1, \ldots, B_m \equiv A_1, \ldots, A_n \to B_1, \ldots, A_1, \ldots, A_n \to B_m$

Basically, it means, that we only need to be establishing functional dependencies with a signle attribute on the right-hand side.

3. Trivial Dependency Rule. Let R be a relation. Let $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$ and let $\{C_1, \ldots, C_k\} \cap \{A_1, \ldots, A_n\}$. Then, the following FDs are equivalent:

 $A_1, \ldots, A_n \to B_1, \ldots, B_m, C_1, \ldots, C_k \equiv A_1, \ldots, A_n \to C_1, \ldots, C_k$

4. Transitive Rule. $A_1, \ldots, A_n \to B_1, \ldots, B_m, B_1, \ldots, B_m \to C_1, \ldots, C_k \Longrightarrow A_1, \ldots, A_n \to C_1, \ldots, C_k$

Armstrong's Axioms

Armstrong's axioms are a complete system of FD derivation. Here **complete** means that using Armstrong's axioms, it is possible to derive from a collection of FDs **all** FD that logically follow from them.

There are three axioms, two of which parallel the trivial dependency and transitivity rules listed above.

1. **Reflexivity.** Let R be a relation. Let $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$ and let $\{C_1, \ldots, C_k\} \cap \{A_1, \ldots, A_n\}$. Then, the following FDs are equivalent:

 $A_1, \ldots, A_n \to B_1, \ldots, B_m, C_1, \ldots, C_k \equiv A_1, \ldots, A_n \to C_1, \ldots, C_k$

2. Augmentation.

 $A_1, \ldots, A_n \to B_1, \ldots, B_m \Longrightarrow A_1, \ldots, A_n, C_1, \ldots, C_k \to B_1, \ldots, B_m, C_1, \ldots, C_k,$ for any C_1, \ldots, C_l .

3. Transitivity.

 $A_1, \ldots, A_n \to B_1, \ldots B_m, B_1, \ldots, B_m \to C_1, \ldots C_k \Longrightarrow A_1, \ldots, A_n \to C_1, \ldots C_k$

Algorithms For Functional Dependencies

Closure

Closure of a set of attributes. Let R be a relation, and $Q = \{A_1, \ldots, A_n\}$ be a subset of R's attributes. The closure of Q, denoted Q^+ is a set of attributes, which are functionally determined by Q, given a set S of functional dependencies on R.

FD Closure algorithm. The following algorithm computes the closure of a set of attributes.

```
Algorithm FD-Closure(R Relational_Schema, Q Set_of_Attributes, S Set_of_FDs)
      returns Set_of_Attributes;
 // Step 1. split all rules in S
 for each f in S
 begin
     if (right side of f has multiple attributes)
     then replace f in S with FDs that have only on attribute on the right;
 end;
 // Step 2. Include set Q in the closure
 X := Q;
// Step 3. Keep including new attributes for as long as FDs allow
repeat
  X' := X;
   for each f: B1,..., Bn \rightarrow C in S
   begin
      if {B1,...,Bn} is a subset of X
      then X := X union {C};
   end;
 until (X' == X); // repeat until no new attributes can be added to X
 return X;
```