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Decomposition of Functional Relations
Examples

Closure Algorithm

Example 1. Consider a relation R(A, B, C, D, E, F ) with asserted FDs

(1) A → B, C

(2) F → E

(3) B, F, E → D

(4) A, D → E

(5) C, E,→ D, F

Problem 1: Find {A}+.

Solution. We start with set X0 = {A}.

The left side of FD (1) is A ⊆ X0. We set X1 = {A} ∪ {B, C} = {A, B, C}.

The left sides of FDs (2),(3),(4),(5) are not proper subsets of X1. Therefore,
{A}+ = X1 = {A, B, C}.

Problem 2: Find {A, D}+.

Solution. We start with set X0 = {A, D}.

The left side of FD (1) is {A} ⊆ X0. We set X1 = {A}∪{B, C} = {A, B, C}.

The left side of FD (4) is {A, D} ⊆ X1. We set X2 = X1∪{E} = {A, B, C, D, E}.

The left side of FD (5) is {C, E} ⊆ X2. We set X3 = X2 ∪ {D, F} =
{A, B, C, D, E, F}.

X3 contains all attributes from R, therefore {A, D}+ = X3 = {A, B, C, D, E, F}.

FD Projection Algorithm

Example 2. Consider a relation R(A, B, C, D, E, F ) with asserted FDs

(1) A → B, C

(2) F → E

(3) B, F, E → D

(4) A, D → E

(5) C, E,→ D, F

Problem 1: Find FDs asserted on R1 = πA,B,C,D(R)

1



Solution. Start with S0 = ∅. We consider all subsets of {A, B, C, D} in turn.

{A}: left side of FD (1) is A. Right side of FD (1) is {B, C} ⊆ {A, B, C, D}.
S1 = S0 ∪ {A → B, C}. No other FD can be matched.

{B}. No FD has left side B.

{C}. No FD has left side C.

{D}. No FD has left side D.

{A, B}. FD (1) qualifies, but we have already dealt with it. No new FDs
emerge.

{A, C}. No new FDs emerge.

{A, D}. FD (4) has left side A, D. It’s right side is {E} ∩ {A, B, C, D} = ∅,
hence no new FDs are added to S1.

{B, C}, {B, D}, {C, D}: no FDs emerge.

{A, B, C}, {B, C, D}, {A, C, D}, {A, B, D}: no new FDs emerge.

Therefore, there is only one FD asserted on R1: A → B, C.

BCNF Decomposition

Example 3. Consider a relation R(A, B, C, D, E, F ) with asserted FDs

(1) A → C, D

(2) B → E

(3) A, E → F

Let us decompose R into BCNF.

Step 1. Establish all keys of R. Using FD-Closure algorithm, we can establish
that A, B is the only key of R.

Step 2. Check if R is in BCNF. We observe that none of the FDs above satisfy
BCNF condition, as neither A, nor B, nor A, E are superkeys.

Step 3. Decompose R. We pick FD (1). {A}+ = {A, C, D}. We decompose R

into R1(A, C, D), and R2(A, B, E, F ).

Step 3. Decompose R1. Using FD-Project we assert A → C, D FD on R1, and
verify that A is a key. R1 is in BCNF.

Step 4. Decompose R2. Using FD-Project we assert B → E and A, E → F on
R2.

Using FD-Closure we establish that A, B is the only key. Then FD (2) violates
BCNF.

{B}+ = {B, E}. We decompose R2 into R3(B, E) and R4(A, B, F ).

Step 5. Decompose R3. Using FD-Project we assert B → E on R3. B is the
key, and R3 is in BCNF.

Step 6. Decompose R4. Using FD-Project we assert A, B → F on R4. A, B is
the key, and R is in BCNF.

Therefore, the decomposition of R(A, B, C, D, E, F ) into a BCNF schema is:
R1(A, C, D), R3(B, E), R4(A, B, E).

Example 4. BCNF decomposition gone awry. Consider a relation R(A, B, C)
with the following FDs asserted:

(1) A → B

(2) B, C → A

Task: Decompose R into BCNF.

R is NOT in BCNF. R has two keys: B, C and A, C. FD (1) violates BCNF

2



condition (A is not a superkey). BCNF decomposition yields two relations:

R1(A, B)
R2(B, C)

Both relations are in BCNF.

Problem: We assert A → B on R1. However, FD (2) cannot be asserted on
either of the tables. This may lead to the following problem.

Consider the following instances of R1 and R2:

R1:
A B
a b
b b

R2:
B C
b a
b d

Let us compute R1 ⊲⊳ R2:

R1 ⊲⊳ R2:
A B C
a b a
a b d
b b a
b b d

We note the the FD A → B holds on R1 ⊲⊳ R2. However, the FD B, C → A

does not. Indeed, tuples (a,b,a) and (b,b,a) agree on values of B, C but NOT
on values of A.

We conclude that the BCNF decomposition of R does not preserve all

functional dependencies.

Example 5. BCNF decomposition gone awry part 2. Consider the re-
lation Schedule(Classroom, Day, Course, Time, Instructor) with with the following
FDs asserted:

(1) Classroom, Day, Time→ Instructor, Course
(2) Instructor, Course → Classroom, Time

In previous examples we learned that this relation has two keys: Classroom,
Day, Time, and Instructor, Course, Day.

Because every attribute of this table is prime, Schedule is in 3NF.

Because the left side of the FD (2) does not contain a key, Schedule is NOT
in BCNF.

A BCNF decomposition would yield two tables:

Schedule1(Instructor, Course, Classroom, Time)
Schedule2(Instructor, Course, Day)

FD (2) is preserved on table Schedule1.

Because the left side of FD (1) is not found in any table, FD (1) ”disappears.”
Consider the following instances of the tables Schedule1 and Schedule2.

Schedule1:
Instructor Course Classroom Time
Dekhtyar CSC 366 14-253 12:10
Dekhtyar CSC 468 14-252 12:10

Schedule2:
Instructor Course Day
Dekhtyar CSC 366 T
Dekhtyar CSC 366 R
Dekhtyar CSC 468 T
Dekhtyar CSC 468 R

This combination of relational tables is consistent, as no FDs are violated.
However, Schedule1⊲⊳ Schedule2 yields:
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Schedule1:
Instructor Course Classroom Time Day
Dekhtyar CSC 366 14-253 12:10 T
Dekhtyar CSC 366 14-253 12:10 R
Dekhtyar CSC 468 14-252 12:10 T
Dekhtyar CSC 468 14-252 12:10 R

This table violates FD (1) from above.

3NF Decomposition

Example 6. 3NF Decomposition. Consider a relational table R(A, B, C, D, E, F )
with the following FDs asserted:

A → B

A → C

C → D

D → F

E, B → F

First, let us note that the set of FDs above forms a minimal basis. (try
removing any FD, and deriving it from the rest).

Second, we note that R is not in 3NF, due to the presence of transitive FDs.

We use 3NF-Decompose algorithm to create the following tables:

R1(A,B)
R2(A,C)
R3(C,D)
R4(D,F)
R5(B,E,F)
R6(A,E)

Note, that each table R1 – R6 is in 3NF, and each FD from above is preserved
in at least one table.

Note, also, that this is not the most concise decomposition of R. In fact, we
can combine R1 and R2 into a single relation R12(A, B, C).

Finally, we note that R6 has been created because none of R1 – R5 contained
a full key of R.
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